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Recent studies demonstrate that interleaving the exemplars of different categories, rather than blocking
exemplars by category, can enhance inductive learning—the ability to categorize new exemplars—pre-
sumably because interleaving affords discriminative contrasts between exemplars from different cate-
gories. Consistent with this view, other studies have demonstrated that decreasing between-category
similarity and increasing within-category variability can eliminate or even reverse the interleaving ben-
efit. We tested another hypothesis, one based on the dual-learning systems framework—namely, that the
optimal schedule for learning categories should depend on an interaction of the cognitive system that
mediates learning and the structure of the particular category being learned. Blocking should enhance
rule-based category learning, which is mediated by explicit, hypothesis-testing processes, whereas inter-
leaving should enhance information-integration category learning, which is mediated by an implicit,
procedural-based learning system. Consistent with this view, we found a crossover interaction between
schedule (blocked vs. interleaved) and category structure (rule-based vs. information-integration).

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

When learning new categories, how should the study of cate-
gory exemplars be sequenced so that learners can accurately clas-
sify new exemplars on a later test? When an art student, for
example, must learn to recognize the styles of different artists so
as to be able to identify the artist responsible for a never-before-
seen painting, should he or she study examples of artists’ paintings
one artist at a time, or should the paintings by the different artists
be intermixed? Recent findings suggest that in this case, and in the
inductive learning of other naturalistic categories, such as butter-
flies and birds, interleaving exemplars of different categories yields
better category learning than does blocking exemplars by category
(e.g., Birnbaum, Kornell, Bjork, & Bjork, 2013; Kang & Pashler,
2012; Kornell & Bjork, 2008; Wahlheim, Dunlosky, & Jacoby,
2011). More recent work using artificial stimuli suggests, however,
that interleaving is only superior when between-category discrim-
inability is low, and that blocking is superior when between-
category discriminability is high (e.g., Carvalho & Goldstone,
2014; Zulkiply & Burt, 2013). The important implication of these
studies is that there may be no single ‘‘optimal” method of
sequencing, but rather, the optimal method may depend on vari-
ous factors (e.g., the nature of the to-be-learned categories).

Although category discriminability can play an important role
in determining whether interleaved or blocked study enhances cat-
egory learning, we argue that another, yet unexplored, factor may
be important: the learning system that mediates performance. An
extensive body of behavioral, neuropsychological, and neuro-
science literature suggests that optimal learning of different cate-
gory structures is mediated by at least two neurobiologically
grounded and competing learning systems (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Ashby & Maddox, 2011; Maddox &
Filoteo, 2005; Nomura & Reber, 2008). One is a frontally mediated
hypothesis-testing system that relies on working memory and
executive attention to develop and test verbalizable rules that
are used to optimally solve rule-based (RB) categories. The second
is a striatally mediated procedural-based learning system that does
not rely on working memory and executive attention but, instead,
learns non-verbalizable stimulus-response mappings that are used
to solve information-integration (II) categories. These two systems
compete and previous research show that there is an initial bias
toward the hypothesis-testing system, with control being passed
to the procedural-based learning system only when the category
structure warrants (e.g., with information-integration categories;
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Ashby & Maddox, 2011; Ashby et al., 1998; Maddox & Ashby,
2004). Dual-learning-systems research suggests that learning in
each system is optimized under different training conditions. For
instance, rule-based category learning is optimized when full
feedback is provided (e.g., ‘‘Wrong, that was a B”) whereas
information-integration category learning is optimized when
immediate, minimal feedback is provided (e.g., ‘‘Wrong”;
Maddox, Love, Glass, & Filoteo, 2008).

We hypothesize that the optimal schedules for category learn-
ing are also dependent on the underlying category structure. In
the current study, we tested this hypothesis directly. With respect
to rule-based categories, blocking exemplars by category should
allow individuals to more easily generate, test, and adjust their
working hypotheses, particularly when there is a relatively
demanding working memory load. To introduce a working mem-
ory load, we used a four-category variant of the rule-based and
information-integration learning structures (from Maddox,
Filoteo, Hejl, & Ing, 2004), rather than the more typical two-
category learning variant found in many dual-learning systems
studies. An interleaved schedule, on the other hand, would hurt
rule-based learning by introducing a more demanding working
memory load, as individuals would have to generate and test mul-
tiple rules for each category simultaneously. While interleaving
would allow learners to compare exemplars that do and do not
fit into a given category, the working memory load involved in
holding multiple dimensions in mind for multiple categories would
make using rule-based hypothesis testing difficult. We predict that
blocked study should better should facilitate rule-based category
learning than interleaved study in our experiments. Following
the same reasoning, we also hypothesize that interleaved study
should be beneficial for information-integration category learning
because it discourages the use of rule-based strategies and speeds
the transition to the procedural based learning system.
2. Experiment 1

2.1. Method

2.1.1. Participants and design
One hundred and thirty-two participants (mean age = 30.0, age

range = 19–57, 71 females) were recruited from Amazon Mechan-
ical Turk (MTurk) and paid $1.00 for their participation. Category
structure (rule-based vs. information-integration) and study
schedule (blocked vs. interleaved) were manipulated in a 2 � 2
between-subjects design. An a priori power analysis determined
that for a medium effect size (f = 0.25), we would need 32 partici-
pants per condition to reach a power of 0.80.
2.1.2. Materials
The four-category rule-based and information-integration cate-

gory structures are displayed in Fig. 1. Each stimulus was com-
prised of a line of varying length and orientation at a fixed
distance from center (that varied in position) on the computer
screen. The stimuli were constructed from three continuous-
valued dimensions: line orientation (between 0 and 90�), line
length (0–200 pixels), and position (between 0 and 100� offset
from fixation). Each dimension has eight values at equal intervals,
but only line length and line orientation values defined category
membership. Each of the eight line length values were paired with
each of the 8 line orientation values, for a total of 64 unique lines of
varying length and orientation. These 64 lines were randomly
paired with one of 8 different positions, so that each unique line
could be shown in one of 8 positions on the screen. In the rule-
based condition, the stimulus space was divided into four cate-
gories using decision bounds that were verbalizable (e.g., ‘‘all
members of category A contain a short, steep line”). To generate
the information-integration condition, the category boundaries
and stimuli from the rule-based condition were rotated 45� so that
no simple verbalizable rule could define category membership.
This transformation allows us to both differentiate rule-based
and information-integration category-learning strategies while
keeping the category structures and stimulus distributions mathe-
matically equivalent.

2.1.3. Procedure
Participants were asked to learn to distinguish exemplars from

four different categories. A cover story was provided, suggesting
that these were images generated by four different robots and
the task was to learn each robot’s way of generating images. Dur-
ing the study phase, participants observed each of the 64 images
(constructed from the factorial combination of all 8 line lengths
with all 8 line orientations) once with a randomly selected (but
without replacement) position. Each item was presented with the
appropriate category label (A, B, C, or D) for 3.5 s each. In the
blocked condition, participants saw the 16 exemplars from one
category before moving on to the next, whereas in the interleaved
condition, all 64 exemplars were presented in a randomized order.
Fig. 2 shows examples of the sequencing and stimuli used in the
study phase. Following this passive study phase, participants
moved on to the test phase, where they were shown the same 64
length-orientation pairings. The test stimuli were randomly pre-
sented, and following each stimulus presentation, participants
were asked to select what they believed to be the appropriate cat-
egory label by clicking on one of four buttons (labeled A, B, C, and
D) arranged horizontally below each stimulus display. This final
test was self-paced and without feedback.

2.2. Results and discussion

2.2.1. Classification performance
Average final test performance for each condition is presented

in Fig. 3. A 2 � 2 between-subjects ANOVA revealed a main effect
of category structure such that accuracy was higher for
information-integration category structures (M = 0.58, SD = 0.17),
relative to rule-based structures (M = 0.51, SD = 0.19), F(1,128)
= 5.36, MSE = 0.03, p = 0.022, gp2 = 0.04. There was no significant
main effect of schedule, F(1,128) = 0.30, MSE = 0.03, p > 0.20. There
was, however, a significant interaction, F(1,128) = 5.34,MSE = 0.03,
p = 0.022, gp2 = 0.04. Post-hoc t-tests revealed that for rule-based
categories, accuracy following blocked study (M = 0.55, SD = 0.19)
was marginally higher than accuracy following interleaved study
(M = 0.46, SD = 0.19), t(66) = 1.96, p = 0.055, d = 0.47. The pattern
was reversed, however, for information-integration categories:
Accuracy following interleaved study (M = 0.61, SD = 0.17) was
higher than accuracy following blocked study (M = 0.55,
SD = 0.17), but this difference was not found to be significant t
(62) = 1.30, p = 0.20, d = 0.33.

2.2.2. Model fits
The accuracy-based analyses suggest that blocking enhances RB

learning, whereas interleaving helps II learning. We hypothesized
that this effect would occur because blocking may facilitate
hypothesis-testing and the rule-discovery process, whereas inter-
leaving may discourage rule use (perhaps by introducing a working
memory load). To examine this possibility, we fit a number of dif-
ferent decision bound models (e.g., Ashby & Gott, 1988; Maddox &
Ashby, 1993) to the data from each individual participant in order
to understand the kind of strategy each participant used to classify
the stimuli. For each of the four experimental conditions, the rele-
vant models were fit separately to the data from the 64-trial test
block.



Fig. 1. The category structures of the RB (left) and II (right) categories. This figure displays the two relevant dimensions (line length and line orientation). In Experiment 1,
there was one irrelevant dimension (position) and in Experiment 2, there were two irrelevant dimensions (ellipse length and position). These irrelevant dimension values
varied randomly across stimuli, and are not illustrated here.

Fig. 2. Sample stimuli and sequencing for each condition. All exemplars were presented sequentially, one by one. In the blocked condition, all exemplars from the one
category were presented before moving onto exemplars of the next category. In the interleaved condition, exemplars from all four categories were intermixed.
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Fig. 3. Classification accuracy results, by schedule and category structure. Error
bars represent 95% confidence intervals.
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The model parameters were estimated using maximum likeli-
hood (Ashby, 1992) and the goodness-of-fit statistic was computed
using the Bayesian information criterion (BIC; Schwarz, 1978). The
BIC is defined as BIC = r lnN � 2 lnL, where r is the number of free
parameters, N is the sample size, and L is the likelihood of the
model given the data. The BIC statistic penalizes models for extra
free parameters. To determine the best-fitting model within a
group of competing models, the BIC statistic is computed for each
model, and the model with the smallest BIC value is reported as the
best fitting model. Five different types of models were fit to each
participant’s responses: models that assumed an RB strategy using
only one of the two relevant features (unidimensional rule use
based on line length or line orientation), models that assumed an
RB strategy using both relevant dimensions (conjunctive rule using
both line length and orientation), models that assumed an II strat-
egy, and models that assumed random guessing (for a detailed
description of these models, see Maddox et al., 2004). The model



Table 1
Number (percentage) of participants best fit by each type of model for blocked and
interleaved study schedules in the rule-based and information-information category
structure conditions in Experiment 1.

Best-fit model Rule-based structure Information-
integration structure

Blocked Interleaved Blocked Interleaved

Information-integration 9
(25.0%)

11
(34.4%)

25
(71.4%)

24
(82.8%)

Conjunctive rule 21
(58.3%)

15
(46.9%)

7
(20.0%)

0
(0.0%)

Unidimensional length 4
(11.1%)

3
(9.4%)

0
(0.0%)

2
(6.9%)

Unidimensional orientation 1
(11.1%)

0
(9.4%)

0
(0.0%)

1
(6.9%)

Random responder 1
(2.8%)

3
(9.4%)

3
(8.6%)

2
(6.9%)

Average percentage of
responses accounted for
by best-fit model

68.0% 59.1% 63.8% 68.1%
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fitting results are shown in Table 1. In the rule-based category
structure conditions, the best-fitting model for each participant
captured, on average, 68.0% and 59.1% of the variance in the
responses made in the blocked and interleaved conditions, respec-
tively. In the information-integration conditions, the best-fitting
model for each participant correctly accounted for, on average,
68.1% and 63.8% of the variance in responses made in the blocked
and interleaved conditions, respectively.

Consistent with our hypothesis, we found that blocked study
led to proportionally more rule-based strategy users relative to
interleaved study. This pattern held true, both when we compare
the proportion of blocked and interleaved study condition partic-
ipants who use any rule-based strategy (i.e., unidimensional
length, unidimensional orientation, or conjunctive rule) and we
restrict the comparison to only those who specifically used the
conjunctive rule-based strategy. With the rule-based category
structure condition, we found that 58.3% of participants in the
blocked schedule were best fit by models assuming the conjunc-
tive rule-based strategy (which is the optimal strategy for rule-
based categories), relative to 46.9% in the interleaved schedule
condition.

As predicted, interleaved study led to proportionally more
information-information based strategy use relative to blocked
study. With information-integration category structures, 82.7% of
participants in the interleaved schedule condition were best fit
by models assuming an information-integration strategy (which
is the optimal strategy for these information-integration cate-
gories), relative to 71.4% of participants in the blocked schedule
condition.
3. Experiment 2

Experiment 1 showed that blocking facilitated conjunctive rule
use and enhanced the learning of rule-based categories, whereas
interleaving discouraged rule-based strategies and enhanced the
learning of information-integration categories. Computational
models were applied to gain these insights into the strategies peo-
ple may be using during the categorization process. To facilitate
computational modeling in Experiment 1, we used highly con-
trolled and relatively simple stimuli. Given that most categoriza-
tion problems in the real world involve perceptually rich stimuli
with many dimensions that are irrelevant to category membership,
in Experiment 2, we replicated the design of Experiment 1 using
more complex stimuli. To achieve this aim, we added a second
irrelevant dimension to each stimuli—an ellipse with fixed height
and varying length.
3.1. Method

3.1.1. Participants and design
One hundred and ninety-two participants (mean age = 34.44,

age range = 18–59, 106 females) were recruited from MTurk and
paid $2.50 for their participation. Category structure (rule-based
vs. information-integration) and schedule (blocked vs. interleaved)
were manipulated in a 2 � 2 between-subjects design. An a priori
power analysis determined that for a medium effect size
(f = 0.25), we would need 32 participants per condition to reach a
power of 0.80. As we might expect more noise from the additional
irrelevant dimension and therefore, a smaller effect size, we aimed
instead for 50 participants per condition (based on f = 0.20).

3.1.2. Materials
The four-category rule-based and information-integration cate-

gory structures were very similar to that of Experiment 1, with one
additional, category-irrelevant dimension. In addition to line
length, line orientation and position, each stimulus also consisted
of an ellipse of varying length (from which the line extended out
of; for example stimuli, see Fig. 2). As with the other dimensions,
the ellipse length dimension also had eight values at equal
intervals.

3.1.3. Procedure
The procedure in Experiment 2 was the same as that of Exper-

iment 1, with the exception that the study and test stimuli all con-
sisted of the additional, category-irrelevant dimension, ellipse
length. The stimuli were created using the same 64 length-
orientation pairings as in Experiment 1, but they were randomly
paired with 64 different ellipse length and position pairings.

Participants studied 64 stimuli in a blocked or interleaved
schedule, and following this passive study phase, participants were
then shown the same 64 length-orientation pairings, but with new
ellipse length and position values. Thus, the stimuli were identical
to those presented during study with respect to the line lengths
and line orientations but were new with respect to the ellipse
lengths and positions. Fig. 2 shows an example of the sequencing
and stimuli used in Experiment 2. Following each stimulus presen-
tation, participants were asked to select what they believed to be
the appropriate category label. This final test was self-paced and
without feedback.

3.2. Results and discussion

3.2.1. Classification performance
Average final test performance for each condition is presented

in Fig. 4. A 2 � 2 between-subjects ANOVA revealed no main
effects, either of category structure, F(1,188) = 1.98, MSE = 0.03,
p = 0.16, or of schedule, F(1,188) = 0.01, MSE = 0.03, p > 0.20. There
was, however, a significant interaction, F(1,188) = 7.03,MSE = 0.03,
p = 0.01, gp2 = 0.04. Post-hoc t-tests revealed that for rule-based
categories, accuracy following blocked study (M = 0.44, SD = 0.15)
was significantly higher than accuracy following interleaved study
(M = 0.38, SD = 0.13), t(81) = 2.12, p = 0.04, d = 0.43. The pattern
was reversed, however, for information-integration categories.
Accuracy following interleaved study (M = 0.47, SD = 0.18) was
marginally higher than accuracy following blocked study
(M = 0.42, SD = 0.16), t(107) = 1.78, p = 0.08, d = 0.38.

3.2.2. Model fits
The model fitting results of Experiment 2 are shown in Table 2.

The same decision-bound models from Experiment 1 were applied
to these data. Not surprisingly, given the low accuracy rates
observed in this experiment, the model fits were poor and the
best-fitting model for each participants accounted for a low



Table 2
Number (percentage) of participants best fit by each type of model for blocked and
interleaved study schedules in the rule-based and information-information category
structure conditions in Experiment 2.

Best-fit model Rule-based structure Information-
integration structure

Blocked Interleaved Blocked Interleaved

Information-integration 10
(23.2%)

9
(22.5%)

37
(69.8%)

43
(76.8%)

Conjunctive rule 28
(65.1%)

22
(55.0%)

9
(17.0%)

4
(7.1%)

Unidimensional length 2
(4.7%)

3
(7.5%)

2
(3.8%)

3
(0.0%)

Unidimensional orientation 2
(4.7%)

2
(5.0%)

2
(3.8%)

0
(0.0%)

Random responder 1
(2.3%)

4
(10.0%)

3
(5.7%)

6
(10.7%)

Average percentage of
responses accounted for
by best-fit model

52.3% 45.7% 53.1% 54.9%
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Fig. 4. Classification accuracy results, by schedule and category structure. Error
bars represent 95% confidence intervals.
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percentage of response variability (range: 45.7–54.9%). Even so, the
model results converged with those from Experiment 1.
4. Meta-analysis of effects

For rule-based categories, there was a benefit of blocking study
of exemplars by category over interleaving study of exemplars
from different categories. To estimate the true effect size of the
blocking benefit for rule-based categories across, we conducted a
meta-analysis1 of the results from the two experiments, as well as
additional data collected as part of a pilot study for a follow-up
study.2 The results of the meta-analysis are presented in the left
panel of Fig. 5. The meta-analysis revealed a robust effect of blocking
over interleaving for rule-based categories: The estimated effect size
(i.e., mean difference, as proportion of correct responses) between
the blocked and the interleaved study schedules is �0.07, 95% CI =
[�0.11, �0.03], z(2) = 3.34, p < 0.001. In other words, performance
1 The meta-analysis was conducted using the Exploratory Software for Confidence
Intervals (ESCI) package (Cumming, 2012, 2014), following the ‘‘New Statistics”
recommendations by the Association for Psychological Science and Cumming (2012).
The package calculates the meta-analyzed effect sizes, by weighting the sample size,
group means, and standard deviations across different experiments.

2 This pilot included the two rule-based category conditions from Experiment 2
(n = 24 in each of the schedule conditions), and yielded almost identical results to
those of Experiment 2, with blocked condition (M = .45, SD = .14) marginally
outperforming the interleaved condition (M = .38, SD = .13), t(46) = 1.77, p = .08,
d = .52. This third replication of a blocking advantage in the rule-based condition gives
us even greater confidence in our effect.
following blocked study is on average 7% higher than performance
following interleaved study, and this advantage of blocking is signif-
icantly different from zero. Furthermore, the heterogeneity of the
effect sizes was not statistically significant, Q(2) = 0.23, p = 0.89,
I2 = 0.0%, which indicates that the observed effect did not differ sig-
nificantly between the three samples.

For the information-integration categories, there was a benefit
of interleaving study of exemplars from different categories over
blocking study of exemplars by category. To estimate the true
effect size of the interleaving benefit for information-integration
categories across the two experiments, we again conducted
meta-analysis using ESCI. The results are presented in the right
panel of Fig. 5. The meta-analysis revealed a robust effect of inter-
leaving over blocking for information-integration categories: The
estimated effect size (i.e., mean difference, as proportion of correct
responses) between the blocked and the interleaved study sched-
ules is 0.05, 95% CI = [0.001, 0.10], z(1) = 2.00, p = 0.045. In other
words, performance following interleaved study is on average 5%
higher than performance following blocked study, and this advan-
tage of interleaving is significantly different from zero. Further-
more, the heterogeneity of the effect sizes was not statistically
significant, Q(1) = 0.10, p = 0.92, I2 = 0.0%, indicating that the
observed effect did not differ significantly between the two
studies.
5. General discussion

Across two studies, we tested the effects of blocked and inter-
leaved study schedules on the learning of rule-based and
information-integration category structures. Using relatively sim-
ple stimuli in Experiment 1 and more complex stimuli in Experi-
ment 2, we found our predicted schedule � category structure
interaction: Rule-based category learning benefited from blocking,
whereas information-integration category learning benefited from
interleaving, and the individual experiment findings are boosted
by our meta-analysis results. Modeling results from both experi-
ments suggest that this interaction is mediated by increased
rule-based strategy use when category exemplars are blocked.
5.1. What does blocking help participants to learn?

With the rule-based categories, blocking study led to better per-
formance than did interleaving study. In our view, the benefit of
blocking for rule-based learning in this particular task may be a
result of one of two factors, or both: (1) Blocking may help learners
identify the relevant dimensions from the irrelevant dimensions,
or (2) blocking may allow learners to generate and test specific
hypotheses for each category more easily as they study the exem-
plars. We conducted a pilot study (first mentioned in footnote 2) as
an initial step toward answering this question: In addition to the
two conditions from Experiment 2, we compared learning under
a third study schedule (n = 26) in which the relevant dimensions
were interleaved, but the irrelevant ones were blocked (i.e., this
schedule was blocked-by-irrelevant-dimensions, as opposed to
blocked-by-category), which was designed to draw learners’ atten-
tion to noticing what dimensions were relevant or irrelevant. On
both the classification test and a test in which participants had
to identify the relevant and irrelevant dimensions, this new
blocked-by-irrelevant-dimensions condition yielded performance
at a level comparable to the blocked condition and marginally bet-
ter compared to the interleaved condition.

Therefore, although we initially hypothesized that participants,
when studying one category at a time, are better able to compare
exemplars from the same category and to generate and test their
hypotheses as to the dimensions define category membership
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28 S.M. Noh et al. / Cognition 155 (2016) 23–29
(and this may still be true, particularly for Experiment 1), these
pilot data suggest that with the addition of irrelevant dimensions
(as in Experiment 2), the blocking benefit is perhaps more likely
driven by the fact that it allows participants to more easily identify
and disregard the irrelevant dimensions. This conclusion, however,
is speculative and the present studies do not tease apart these two
possibilities.

5.2. What does interleaving help participants to learn?

With the information-integration categories, for which there
are no verbalizable rules that optimally distinguish between the
categories, interleaving study led to better performance than did
blocking study. As information-integration learning does not
depend on generating, testing, updating, and maintaining explicit
rules, the marginally significant interleaving benefit in
information-integration learning may be due to the fact that an
interleaved schedule encourages participants to more quickly
abandon the use of sub-optimal rule-based strategies during study.
When there are a manageable number of to-be-learned categories,
it seems plausible that interleaving would enhance learning
because it juxtaposes instances of a category with members of
other categories, allowing learners to narrow down the defining
features of one category that distinguishes it from another. With
our design and stimuli, however, we argue that, for rule-based cat-
egories, the potential benefit of being able to compare and contrast
successive exemplars of different categories that is provided by
interleaving is overshadowed by working memory limitations
and the costs associated with having to process multiple stimulus
dimensions across four categories. The modeling results of Experi-
ment 1 and Experiment 2 provide support for this idea, as inter-
leaved conditions led to both a decrease in rule-based strategy
use and increase in information-integration strategy use relative
to blocked conditions.

Moreover, the present study is important for another reason: It
demonstrates a case where between-category discriminability is
not a moderator of the interleaving benefit. The existing literature
(e.g., Carvalho & Goldstone, 2014; Kang & Pashler, 2012; Zulkiply &
Burt, 2013) on moderators of the interleaving benefit in category
learning has largely focused on the discrimination hypothesis: That
is, that the interleaving benefit depends on the discriminability of
to-be-learned categories and emerges only when between-
category discrimination is relatively difficult. Our data suggest,
however, that the discriminability hypothesis may not provide a
complete account of what determines optimal category-learning
schedules. Since our rule-based and information-integration cate-
gories are structurally equivalent, discriminability is equated, yet
optimal schedules differ across category structures.
5.3. Possible interactions of discriminability and category structure

It is likely that discriminability and category structure will
interact. It has been theorized that the two category learning sys-
tems are governed by different factors (e.g., rule-based learning
is dependent on working memory, while information-integration
learning is not), and thus manipulations of between and within
category discriminability could act differently within each system.
In other words, it would be overgeneralizing our results to claim
that blocking always favors rule-based learning (indeed, we
acknowledge that hypothesis testing can proceed from between-
category contrasts as well as within-category comparisons,
depending on the nature of the to-be-learned, rule-based cate-
gories) or that interleaving always favors information-integration
learning. Additionally, when there are only one or two to-be-
learned categories (for example, category-A and not-A) or when
rules are very simple to keep in mind, interleaving might be useful,
given the benefits of spacing on memorization (Cepeda, Pashler,
Vul, Wixted, & Rohrer, 2006). When, however, rule-based learning
is explicit and thus subject to working memory limitations, as pre-
sumably present in our four-dimensional, four-category stimuli set
(given overall performance levels), blocked study leads to better
learning than does interleaved study.

The discrimination hypothesis and our proposed dual-learning
systems framework are not mutually exclusive and future research
should explore how these two theories might interact and/or inde-
pendently contribute to better account for the growing body of lit-
erature on sequencing effects in category learning.
6. Concluding comment

Although most real-life categories and concepts cannot be
cleanly divided into ‘‘rule-based” or ‘‘information-integration” cat-
egories, the present findings have important implications for edu-
cation. That is, simply knowing that different types of learning
materials may lend themselves more readily to one form of cate-
gory learning over another may be useful from an educational
standpoint. Knowing that a task such as learning artists’ styles is
less verbalizable and is, therefore, likely to profit more from ‘‘infor
mation-integration” style learning, for example, whereas learning
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to classify organic chemistry compounds, or to classify different
types of mathematics and physics problems, is likely to profit more
from rule-based learning is useful. Knowing that prior knowledge
and expertise of a learner may also play a part, with novices relying
more on a rule-based learning system and more advanced learners
relying more on an information-integration learning system, is
potentially useful as well. Thus, even in our complex and imperfect
world, the dual learning-systems framework provides a useful
framework for thinking about the methods of instruction that
can be used to optimize different types of learning.
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