Why Mathematical Models?
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If you are a member of the set of people to whom
this article is addressed, that is, if you are an
undergraduate student in psychology, you certainly
possess some or all of the following characteristics:
(a) you are interested in understanding behavior;
(b) you are concerned about a number of environ-
mental, social, and political issues; (¢) you find
the topics on the “soft” side of psychology some-
what more interesting than the topics on the
‘“hard” side of psychology; (d) you know little,
if anything, about mathematical psychology (and
are somewhat suspicious of the whole endeavor);
and (e) you do not have the time to do everything
that you want to do.

Given an audience with those characteristics,
this article has relatively limited goals. It says a
little about what mathematical models are, gives
two specific examples, and indicates why. you
should care to know something about mathematical
models.

There is a real question as to whether or not
undergraduate students in psychology should spend
a chunk of their limited time on mathematical psy-
chology. For some of you the question does not
exist because no such course exists among the
undergraduate courses available to you, The ab-
sence of such a course is sometimes by design—
some of those in charge of undergraduate curricula
in psychology do not feel that such a course is
appropriate for undergraduates—and is sometimes
necessitated by there being no faculty member who
is (or feels he is) qualified to teach such a course.
Teaching such a course is not easy; at least it is
not easy to teach it well. In fact, for those of
you at schools where there is a course of sorts in
mathematical psychology, the way it is taught is
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sufficient reason for you to avoid it. The fact that
undergraduate courses in mathematical psychology
typically have small enrollments is not altogether
the result of undergraduates’ initial predisposition
against such courses. It is difficult to compete with
current high-demand courses such as The Drug-
Crazed Deviant Individual, but, when taught well,
courses in mathematical models can be and are
well received and even semipopular.

You may feel that you do not have the mathe-
matical training needed to profit from a course in
mathematical psychology, and that may be true.
Today, however, the minimal training for such a
course is certainly not more than the background
in mathematics and statistics required to be sophis-
ticated in any area of psychology. You may also
feel, given your particular interests, that mathe-
matical models have little relevance to you because
few, if any, efforts at quantitative theorizing have
been attempted in your area of interest within psy-
chology. That again may be true, but the basic
techniques of formulating and testing models are
being applied ever more widely in psychology; only
a few corners of psychology remain free of mathe-
matical (or computer) models, and they are not
likely to remain completely free for very long.
There are some good reasons for some of you to
expend the effort required to learn something of
mathematical models. Those reasons are discussed
later in this article.

Why Mathematical Psychology?

Before attempting to define mathematical models
and to characterize their properties and virtues,
some comments on the role of mathematics in psy-
chology are in order. We tend to think of mathe-
matical psychology as a recent development within
psychology, starting somewhere around 1950, and
it is, in the sense of being pervasive, identifiable,
and generating books, journals, and graduate pro-
grams of study, but the history of mathematical



theorizing in psychology is long and substantial.
As Miller (1964) said, “Psychology has had a long
and not always happy affair with mathematics.”
The drive to quantify has been as strong in psy-
chology as in other sciences. Any number of ex-
amples from the last century and the first half of
this century of efforts to characterize behavior pre-
cisely and quantitatively could be cited, for exam-
ple, Weber’s and Fechner’s efforts to specify the
relationship between the intensity of a physical
stimulus and the subjective intensity of the result-
ing sensation, Ebbinghaus’ efforts to specify the
forgetting function for learned verbal items, and
Hull’s attempts to postulate a general theory of
behavior.

It is standard practice, of course, that we report
our observations of behavior in numerical terms.
The advantages of quantifying data are by now so
obvious that we take for granted, whatever the area
of psychology, that our observations should be re-
corded as precisely as possible. Thus, we record
response probabilities, amplitudes, speed, fre-
quency, and so forth,

When one examines the history of the sciences
that are more developed than psychology, the im-
portance of mathematical theories in scientific
progress is very apparent. Not every application
of mathematics in science has proven fruitful, but,
in general, as knowledge has grown in a field of
study, theories have become more mathematical;
and as theories have become more mathematical,
knowledge has grown. Few people committed to
scientific psychology would question the ultimate
need to phrase theories in quantitative form. The
extent to which current theories in psychology are
not quantitative reflects both the complexity of
behavior and the relative immaturity of psychology
as a science. It is possible, of course, that current
attempts to work toward quantitative theories are
premature, or, more fundamentally, that behavior
is characterized by an intrinsic lack of lawfulness,
which makes quantitative theories ill advised.

An important point to make about mathematical
psychology as an area of study is that it is not
an area of study. Mathematical psychology does
not denote a particular content area—not in the
way that terms such as learming, perception, or
personality denote particular content areas. Rather,
mathematical psychology refers to an attitude, a
way of going about the study of various topics
within psychology. In fact, to know that someone

is a mathematical psychologist working in a par-
ticular area of study says nothing of his theoretical
biases in that area, except that he is an adherent
of the mathematical psychology approach. He
may have one or more of a variety of different
biases or inclinations with respect to his area of
study: the tools of mathematics are available to
anyone; they are theoretically neutral.

What Are Mathematical Models?

The precise definition of a mathematical model is
not trivial to state and is something that philoso-
phers of science worry about, but the customary
usage in psychology is fairly straightforward: “A
mathematical model is a set of assumptions to-
gether with implications drawn from them by
mathematical reasoning |Neimark & Estes, 1967,
p.v].”

The most important aspects of a model are the
theoretical notions it embodies. A model is a
formal system, an abstract representation, and it
can be stated or phrased in different ways. The
assumptions of the model might be stated in axio-
matic form, used to generate a program in a com-
puter, or provide the basis for constructing a
mechanical model. The adequacy of a model is
judged by how well its behavior corresponds to
the behavior of the system it was designed to
represent. What is tested in any such judgment
are the formal properties of the model, not the
specific format in which the model is stated. Thus,
we might postulate that the human attentional sys-
tem can be represented as a clerk (processor)
waiting on customers (stimulus inputs) arriving
at a counter (receptors). The clerk might be
assumed to have particular properties (e.g., he can
only handle one customer at a time, and it takes
him a certain period of time to handle a customer),
and the customers might also be assumed to have
particular properties (e.g., they may arrive and
choose among one of several counter locations, cor-
responding to different sense modalities, and if
they have to wait too long in line they may leave
before being served). If such a representation of
the human attentional system were fully and pre-
cisely specified, its predictions (“behavior”) could
be compared to the behavior of a real human atten-
tional system in some experimental situation, say
one involving the classification of rapid inputs
presented visually and auditorily.
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F1c. 1. Schematic illustration of the modeling process (with
permission, after Coombs, Dawes, & Tversky, 1970),

The point of the preceding example is that any
test of the model’s adequacy is a test of its formal
properties, not a test of its specific representational
format. We can state with some confidence that
there are no clerks or counters in the human head,
but we cannot reject the model on that basis. There
may be a quite close correspondence between the
assumed properties of the clerk and the properties
of some central processor in the human informa-
tion-processing system.

You might wonder why one would care to postu-
late an adequate model of a particular behavioral
system, The answer to that question is quite sim-
ple: We want to understand behavior. Suppose we
were able to construct a mechanical rat that learned
to run mazes in exactly the way a genuine rat
learned to run mazes; that is, the learning behavior
of each had precisely the same characteristics. In
an important sense, if we know what we did to
make our mechanical rat learn—what learning and
motivating mechanisms were assumed-—we can say
that we understand how a real rat learns.

Figure 1 attempts to clarify some of the points
stated above. A model is an abstract representa-
tion, a caricature, of some behavioral system. The
model consists of a set of assumptions and some
correspondence rules. By “correspondence rules”
is meant the specification of what in the model
corresponds to what in the world, that is, to what
in the behavioral system and situation of interest.

In practice, quantitative theorizing is a dynamic
process. Typically, a simple model is postulated to
account for behavior of a specified type in a well-
defined experimental situation. The model is then
tested, found to be inadequate to some degree,
modified in some fashion designed to correct the
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inadequacy, tested again, modified again, and so
forth. The process constitutes a kind of struggle
by the theorist to understand the behavior he is
studying, a continuing effort to increase the ade-
quacy and generality of his theory. Much more
often than not, some particular discrepancy be-
tween the observed and predicted behavior is so
compelling that the model is clearly beyond repair.
In other cases, the total of small but consistent dis-
crepancies comes to be overwhelming,

It is worth commenting that a model can be
rejected or falsified, but it cannot be proven.
Coombs, Dawes, and Tversky (1970) illustrated
that point with a good example. Suppose a par-
ticular model of some learning process predicts that
Teaching Method A should be better than Teaching
Method B. Finding that Method B is better than
Method A rejects the model, whereas finding that
Method A is better than Method B only offers
inductive support for the model, but does not prove
the model. There may be other quite different
models that are consistent with the result as well.
Thus, we may gain ever increasing confidence in
a model. We are, for example, so confident of
certain models in physics that we think of them as
the quite literal truth rather than as models. How-
ever, we can never prove that the model is a com-
pletely accurate representation.

Mathematical Models versus
Verbal Models

It should be apparent from the foregoing discussion
that the psychological assumptions underlying a
model are the critical characteristics of the model
as a theory of some behavioral process. A model
may involve very elegant and sophisticated mathe-
matics and still be a very bad model, and a model
stated in a verbal, nonmathematical form may be
a quite good model. There are, however, some
clear-cut virtues in attempting to phrase a model
in a mathematical form.

A MATHEMATICAL MODEL IS MORE
READILY FALSIFIABLE

A long-standing problem in psychology is how to
get rid of old, inadequate theories. People have a
way of becoming committed to theories, especially
their own theories, and they tend to interpret ex-
perimental results as being consistent with their
theory, however strained such an interpretation



might be. In contrast to the fate of old army
generals, old theories are not only not permitted
to die, they are not permitted to fade away either.
The problem is a problem in direct proportion to
the imprecision of our theories. If a theory is not
clearly and unambiguously rejectable, it is of little
usefulness. Mathematical models, because they
yield numerical predictions, are much more falsi-
fiable than are verbal models, which yield, at most,
predictions of ordinal relationships. Thus, mathe-
matical models predict not only whether some-
thing is greater or lesser, or faster or slower, than
something else, but also how much greater or lesser,
or faster or slower.

MATHEMATICAL MODELS FORCE A THEORIST
TO BE PRECISE

In order to derive quantitative predictions from a
model, the assumptions on which the model is based
must be specified completely and precisely. At-
tempting such a specification is often a useful
exercise for a psychologist. The exercise forces one
to clarify one’s notions and to choose among alter-
native notions; it can become painfully obvious at
times that one is simply not clear as to exactly
what he thinks—or that certain hidden assumptions
reside in one’s opinions.

THE CONSEQUENCES OF ASSUMPTIONS

CAN BE DERIVED

A related virtue of mathematical models is that
implications can be derived from the assumptions
of a model via mathematical logic, some of which
may be far from apparent. Such unexpected impli-
cations, which would be unobtainable if the model
were phrased in a nonmathematical form, often
provide a new basis for testing the model and fre-
quently suggest new experiments.

MATHEMATICAL MODELS IMPROVE DATA ANALYSIS

The implications and numerical predictions de-
rivable from a mathematical model often suggest
new analyses of experimental data. Also, the rela-
tive value of different data analyses in terms of
characterizing the behavior being studied can be
determined by the power of those analyses to de-
cide between alternative mathematical models. In
short, mathematical models contribute to our being
aware of the richness in our data.

MATHEMATICAL MODELS HAVE MORE
PRACTICAL APPLICATIONS

An even fairly satisfactory mathematical model
can have a number of practical applications. For
example, we might use a learning model to opti-
mize the programmed instruction of a child in
reading or arithmetic; a decision-process model
might facilitate medical diagnosis; the format of
printed or lighted displays might be improved on
the basis of a model of pattern recognition; a
model of attitude change might serve the good or
bad purposes of governments and other agencies in
influencing the public; games designed to teach co-
operative behavior to children might be derived
from models of two-person interactions; and so
forth.

Some Examples

It is likely at this point that you are possessed of
one or both of two dissatisfactions. You may feel
that the discussion thus far is too general and
abstract, that everything is too vague. Or you
may feel that not enough has been said about how
the actual steps in model building—specifying as-
sumptions, establishing correspondence rules, de-
riving implications and numerical predictions, and
judging the extent to which the model is an ade-
quate representation of the behavior it purports
to model—are actually carried out. In an attempt
to alleviate the first dissatisfaction, two simple
models are formulated and discussed below. At-

" tempting to alleviate the second dissatisfaction,

however, is nontrivial if done seriously and is be-
yond the goals of this article. There is a great
deal to say about each of the steps in the model-
building process; it would require an article much
longer than this one to do justice to any one of
them. Some of the considerations are very inter-
esting, some of them are very complex, and should
you be interested, there are places for you to find
out about them.

Nothing seems to clarify what mathematical
models are all about as well as simply examining
the assumptions and implications of a variety of
different models, and at this point in time there is
a large variety from which to choose. There are
models of sensation, perception, memory, learning,
problem solving, avoidance conditioning, multi-
person interactions, choice behavior, attitude
change, language learning, perceptual-motor skills,
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Fic. 2. (A) A trial in a simple reaction time experiment;
(B) a typical distribution of simple reaction times; (C)
predicted distribution of reaction .times.

and other behavioral processes as well. The two
models discussed below were chosen arbitrarily to
illustrate several different points about mathe-
matical models.

SIMPLE REACTION TIME

Assume, for a minute, the following situation. A
person is sitting at a table. On a vertical board
facing him there is mounted a small light, and on
the table in front of him there is a response key.
He is sitting with his right hand on the response
key, and he is wearing headphones.

Now assume that we simply require the person
to press the response key as rapidly as he can when
the light goes on. This elemental task.is the sim-
ple reaction time task. An actual experiment might
consist of a very large number of trials as shown
at the top of Figure 2. A trial begins with a
warning buzzer presented through the headphones,
there is a fixed foreperiod (usually a few seconds)
from the warning signal until the light comes on,
and the subject’s reaction time is measured as the
time from the onset of the light until he presses
the response key.

The simple reaction time task is, in fact, a simple
task, and the subjects’ reaction times are very
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short. A subject’s behavior in the task is not all
that simple to understand, however. One problem
is the inherent variability of simple reaction times.
A given subject can be characterized as having a
certain average reaction time in the task, but if
we record his reaction times from a large number
of trials, they will constitute a distribution varying
over a considerable range on either side of his
average reaction time. An example of such a dis-
tribution is shown in Figure 2B.

What produces the variability in a subject’s sim-
ple reaction time? One might propose a number
of different attentional, perceptual, and response
mechanisms in an attempt to account for the ob-
served reaction time behavior. Consider the model
generated by the following assumptions.

1. A subject must detect that the light is on, and
he must execute the response. Both processes take
time, and the subject’s reaction time on any trial
is the sum of the times required for each process.

That is, RT =d + .,

where d; is the time taken to detect the light on a
trial, and 7, is the time taken to execute the
response.

2. The response execution time does not vary
from trial to trial; that is, it is equal to some
fixed number of milliseconds.

3. The subject’s detection time varies from trial
to trial through the following process. During
any one instant of time (At) following the onset
of the light, the subject is either attending to the
light or attending to something else. The subject
need only attend to the light during some one
instant of time following its onset to detect the
light. During any one At following the light’s
onset, the subject attends to the light with prob-
ability p or attends to something else with prob-
ability 1 — p.

Assumption 3 of the model generates a prob-
abilistic distribution of detection times. It is as
though the subject’s attention is governed by a
switching mechanism characterized by a fundamen-
tal intermittency; that is, switching can occur only
at At intervals of time. Thus, the subject’s de-
tection time on any trial might take on any of the
values, At, 2At, 3At, 4At, . . ., depending on when
the subject first detects the presence of the light.
The probabilities that the subject’s detection time
will be equal to any of the possible times are
shown below.



DETECTION TIME PROBABILITY
At P
2At (1 — p)p
3at (1 p)p
nit (1— p)ip

For any particular values of 7, p, and At, the
model generates an actual predicted distribution
of reaction times. The exact form of the distri-
bution will depend on the particular values chosen,
but all of the distributions will have a form similar
to that shown in Figure 2C. Assume, for example,
that p = .30. The values of p, (1 —p)p,
(1 — p)?p, and so on, will then be .30, .21, .15,

. ., respectively; and any other value of p will
produce steadily decreasing values as well.

Suppose now that we have obtained an actual
distribution of simple reaction times from a sub-
ject. What we would like to decide is how well
the distribution predicted by our model corresponds
to the subject’s distribution. Deciding the matter
involves (a) estimating what values of 7, , and At
will yield a predicted distribution closest to the
obtained distribution, and (4) conducting a good-
ness-of-fit test on the two distributions to measure
the likelihood that the subject’s distribution could
have been generated by the processes assumed by
the model.

In this particular case it would not be necessary
to actually carry out ¢ and & above, because one
can see by inspection of Figure 2 that the model
predicts distributions with certain general proper-
ties that do not correspond to the properties of
actual distributions. The model predicts a distri-
bution with a geometric (monotonically decreasing)
shape. That is, the most likely reaction time is
the fastest possible reaction time (r; + At), whereas
observed distributions do not have that property.

Some of you may be thinking that it was a mis-
take to assume that response execution time does
not vary, that if we modified the model to include
variation in response times it might do a better
job—maybe so. It is just such speculations that
seduce theorists into the modify, test, modify, test,
etc., struggle referred to earlier.

If one were to attempt seriously to postulate a
mode] for simple reaction time, there are additional
phenomena one would need to worry about. For
example, reaction time varies with the intensity of

‘the stimulus, becoming faster as the intensity of

the stimulus increases. In the model specified
above, stimulus intensity might be expected to
affect p, the probability of attending to the stim-
ulus in any instant of time. Simple reaction times
also vary with the duration of the foreperiod, be-
coming longer with longer foreperiods. There is
no immediately obvious way to reflect such an
effect in the model.

Attempting to extend a model to account for
additional phenomena in a particular behavioral
situation is one way to test the correspondence
rules embodied in the model. If the model is an
adequate representation of a behavioral situation,
then changes in the situation usually can be repre-
sented by certain natural changes in the model. If
making the natural changes in the model affects
the predictions of the model in a different way than
the changes in the situation affect behavior, the
adequacy of the model as a representation of the
behavioral situation is questionable. When, as in
the foreperiod example above, there seems no
obvious way to interpret a certain experimental
manipulation in the structure of a model, one
wonders whether the structure of the model is com-
plete enough to be adequate. '

AVOIDANCE CONDITIONING

The second illustration is a model for avoidance
conditioning postulated and tested by Bower and
Theios (1964). This model deals with a very dif-
ferent. behavior by a different experimental animal
than that represented by the first model, and, in
clear contrast to the first model, this model seems
quite promising.

The experimental situation is as follows., A
white rat is placed in an apparatus that consists
of two compartments. The compartments are
separated by a vertical partition with a door in
the middle that can be raised, permitting the rat
to go from one compartment to the other.

An avoidance-conditioning trial consists of the
following series of events: the rat is in one of the
compartments minding his own affairs; a light goes
on in the rat’s compartment, and, simultaneous
with the onset of the light, a buzzer sounds and
the door between the compartments is raised; three
seconds after the onset of the light and buzzer, an
electric shock is administered through the metal
grid on the floor of the rat’s compartment, If the
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rat runs to the other compartment before the
shock is administered, he avoids the shock. If the
rat does not make the avoidance response in time,
he is shocked, and the electric current stays on
until the rat manages to escape it by running to the
other compartment. The avoidance trials continue
until the rat learns to make the avoidance response
consistently.

Bower and Theios assumed that the rat, at any
point during the avoidance training, is in exactly
one of three states of learning. The rat starts in
an unconditioned (U) state in which he is naive
and is certain to be shocked. As a result of the
rat’s being shocked, there is some probability ¢
that a fear response to the light and buzzer stim-
ulus is conditioned in the rat. In the fear-condi-
tioned (F) state, there is some probability p that
the rat successfully avoids the shock; the rat’s
fear in response to the light and buzzer motivates
activity such as running and jumping, which may
lead to his getting through the door prior to the
shock. In the event that a rat in State F does
not avoid the shock, he must escape it, and escaping
the shock results in his learning the avoidance re-
sponse with probability ¢. Once the rat has
learned the avoidance response, he is in State L and
he will successfully avoid the shock thereafter.

These assumptions are represented by the matrix
below. The matrix consists of the state-to-state
transition probabilities assumed by the model.

State on
Trialn 4+ 1
L F U
Stateon L | 1 0 0 |
Trialw F |(1—p)c 1— (1 —=p) O \
U 0 ¢ 1—¢

For example, the matrix says that an animal in
State F on Trial » will, as a result of the events on
Trial », make the transition to State L on Trial
n + 1 with the probability (1 — p)c. The model
is of a familiar type about which a great deal is
known: it is a three-state Markov model. From
the model a great many aspects of the trial-by-trial
avoidance learning of the rat can be predicted; for
example, once values are assigned to ¢ and p, the
model predicts the probability of an avoidance re-

432 » MaAy 1973 * AMERICAN PSYCHOLOGIST

sponse on any trial, the average trial of the last
shock, the number of trials prior to the first suc-
cessful avoidance, and many other statistics of
performance.

This particular model has been found to account
quite well for avoidance learning in the situation
described. As is often the case, some of the pre-
dictions of the model that can be derived mathe-
matically are not at all obvious. For example, the
model predicts that if we look at a rat’s perform-
ance on the trials that fall between the trial on
which the rat first avoided the shock and the trial
on which the rat was last shocked, there will be
no improvement in his performance.
Theios, in analyzing actual avoidance-learning data,
found strong support for that far from obvious pre-
diction of the model.

Bower and

Why Should You Be Interested?

For some of you, there is an obvious reason why
you should be interested: you might want to get
involved. Some of you have the skills, interests,
and inclination to contribute to mathematical psy-
chology and, thereby, the study of behavior. Al-
though this article has focused on mathematical
models, the arguments apply equally well to com-
puter models, and some of you may have the abili-
ties and motivation to immerse yourself in the
study of behavior by means of such models.
Newell and Simon’s (1972) recent book provides
an in-depth coverage of the computer simulation
of human problem solving.

Others of you may simply want to know enough
about mathematical or computer models to read
articles that involve models and to discuss issues
involving models with other psychologists. An in-
creasingly higher percentage of important theoreti-
cal papers in psychology involve quantitative theo-
rizing. In the study of human cognitive processes,
for example, nothing less than a kind of revolution
has taken place in the last decade, and much of
the progress has been based on quantitative models
(for a discussion of these developments, see Greeno
& Bjork, 1973). Books by Atkinson, Bower, and
Crothers (1965), Coombs et al. (1970), and Restle
and Greeno (1970) comprise a good treatment of
general topics in mathematical psychology.
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