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MATHEMATICAL LEARNING THEORY AND THE
NEW “MENTAL FORESTRY™
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Human Performance Center, The University of Michigan, Ann Arbor, Michigan

In the decade or so that constitutes the period of our review,? progress toward
understanding the processes involved in learning can only be described in terms
that sound extravagant. It is our task to consider only one part of this remark-
able progress, but in order to put our review in perspective, we begin with a
brief sketch of our impression of the current condition of the psychology of
learning and cognition,

A little more than 10 years ago, experimental psychologists in the field of
learning seemed concerned primarily with changes in the frequency of certain
response classes over trials as a function of experimental conditions. Since that
time a new psychology of cognition has grown up, at least to the point of adoles-
cence, if not young maturity. While it is important to remember that occasional
far-sighted theorists and commentators since James (115) and before have seen
clearly that cognition is a complex and worthy subject, it is nonetheless true that
the emergent techniques and interests in the study of cognitive processes such
as attention, encoding, search strategies, rehearsal processes, and understanding
constitute a kind of revolution.?

1 Preparation of this report was supported in part by the Air Force Office of Scientific
Research under Contract No. F44620-72-C-003 with the Human Performance Center,
Department of Psychology, University of Michigan; and in part by National Science
Foundation Grant GB-31045.

? Mathematical learning theory has not been the topic of an earlier contribution to
the Annual Review. We date our review mainly from Estes’ review of learning theory in
1962 (65), although we have omitted some material dealt with by Millward in 1964 (24),
and our review overlaps to some extent Hunt’s review of computer simulation in 1968
(108). Our literature review ends with the calendar year 1971.

8 Though not in the sense of Kuhn (130), whose concept of a revolution seems to us to
be quite irrelevant to the analysis of scientific progress. We consider the new develop-
ments of the 1960s as completely continuous with the development of mathematical
learning theory in the 1950s by many workers, including Estes (59, 62), Bush & Mosteller
(37, 38), and Suppes & Atkinson (212), and although we did not participate in those
developments, it seems to us that they were quite continuous with earlier well-known
work such as that of Hull (106). Virtually all of the work reviewed here has been con-
tributed by scientists trained by those who built psychology during what we and others
would call the prerevolutionary period of cognitive psychology, or by those prerevolu-
tionary scientists themselves. In our judgment, what we are reporting is nof a paradigm
shift, whatever that might be.
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This revolution has influenced the study of learning very substantially. In
particular, learning has been subjected to an analysis of processes such as atten-
tion, storage, and retrieval that underlie the overall changes of state that are
labeled learning. Major innovations have occurred at levels involving general
conceptualization, theoretical method, and experimental technique. Workers in
the field are all aware of the new experimental paradigms that have been devised
to isolate and examine particular processes, such as sensory storage of briefly
exposed visual information (2, 71, 206), attentional and short-term storage pro-
cesses in audition (34), short-term retention of verbal items (35, 173, 174, 201),
encoding processes and the role of similarity (43, 179), processes of retrieval
from both short- and long-term memory (42, 133, 148, 209), and the learning of
concepts and rules (99, 190), to mention just a few.

Along with these developments in experimental methods, several formal
developments have provided increased power for theoretical work. In his review
of literature prior to 1962, Estes (65, p. 111) correctly foresaw the importance of
developments in mathematics by which “psychologists have had placed in their
bands the simple but powerful methods of finite Markov chains,” which have
provided the formal basis of much substantive analysis. Of similar importance
have been continued developments in artificial intelligence, stimulating numerous
efforts to understand psychological processes with the aid of computer simula-
tion (110). '

The most important theoretical development, in our opinion, has been the
evolution of concepts for describing and analyzing psychological processes and
structures. A notable feature of many theoretical contributions has been the as-
sumption of considerable structural complexity. The structural properties of
systems for processing information and memorizing have been considered in
several theories (9, 161). Theorists have assumed a hierarchical process of fea-
ture extraction, with elementary properties analyzed initially, and more complex
properties or names of stimuli processed or stored at higher levels (137, 197, 199).
Models of problem solving have incorporated muitilevel functioning, with re-
cursive methods and executive control of processes (58, 184). Tree structures
have been proposed to represent what a subject learns when a list of verbal items
is memorized (76, 101), and when a classificatory concept has been induced
during concept learning (108, 112, 229). And the problem of serial order has been
approached with increased sophistication, with representations of sequential
concepts as hierarchies of rules or transformations (189, 190, 204, 233).

A decade ago it was still appropriate to characterize the psychology of learn-
ing as the study of “mental chemistry,” that is, the investigation of processes by
which elements combine into more complex compounds. We sense that the study
of learning is in a transition stage in which our concerns are moving toward an
interest in the processes by which trees and other cognitive structures are ac-
quired and modified. Perhaps “mental forestry” suggests a better analogy for
characterizing the current transition stage, if not the final version of the psychol-
ogy of learning that is emerging. At least, if we are still mental chemists, we are
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FIGURE 1, Divisions of information-processing function
in the human memory system.

dealing with structures comparable to those of organic rather than inorganic
compounds.

- In the new psychology of cognition that has developed in the last decade or
80, it is customary to represent some main divisions of function in a flow dia-
gram, and Figure 1 shows the main components of what we take to be the current
consensus. Information enters the system through sensory registers, where it is
held in short-term sensory storage (STSS), but is lost very quickly—usually
within fractions of a second—unless it is processed further into the system. Most
theorists assume that further processing consists of attending to the sensory in-
formation in STSS, which has the effect of transferring information to short-
term memory (STM). Short-term memory has a relatively small capacity of a
few items or chunks of information, and items are apparently stored most fre-
quently if not always in a form appropriate for rehearsal, with phonemic features
playing a prominent role. Items are typically held in STM for times on the order
of seconds, and retrieval of information from STM is rapid and reliable.

By long-term memory (LTM) we mean to denote a system of relatively large
capacity, at least up to dozens of items. Retrieval from LTM is problematic, and
it appears that much information apparently lost actually remains in the system
but becomes inaccessible. The time scale we have in mind regarding LTM is on the
order of a few minutes up to several hours. Examples of learning that involve
LTM include memorizing a list of words during an experiment, or retaining
information about experimental procedures while reading the results section of a
scientific article. By semantic and factual knowledge, we refer to the person’s
store of knowledge about concepts and past events that is virtually permanent.
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Terminology is troublesome here, since several authors have referred to this
kind of permanent store as long-term memory, with considerable justification.
But we have chosen the usage described here in order to make maximal contact
with the existing literature.

Our reference to “executive control” in Figure 1 recognizes the importance of
attention and decision processes in the storage, rehearsal, and retrieval of in-
formation. A subject may decide to ignore an item in STSS rather than enter it
in STM (9). Contact with the lexical contents of semantic and factual knowledge
involves a decision rule for determining whether enough information has been
perceived to justify assigning a name to the stimulus (137, 197). There are mech-
anisms for selecting items held in STM for rehearsal (9, 17, 183), and for selecting
attributes of stimuli for special attention and processing (40, 185, 239). Develop-
ments of organized groupings of items in LTM and strategies of searching in
LTM for items (124, 202) are further functions carried out under executive con-
trol. When information is retrieved, a decision has to be made whether the in-

~ formation is adequate to justify a response (16, 29, 122, 161).

The learning theories that are the subject of this review deal with the process
of acquiring information and remembering it. Using a criterion that is fairly
standard, albeit arbitrary, we consider learning as a process resulting in retention
of information for at least a few minutes. Thus, in relation to Figure 1, we con-
sider theories dealing with the process of storing and retaining information in

' LTM. We omit consideration of STSS entirely, and our concern with STM is

limited to processes of short-term retention that influence storage of information
in LTM. Modifications in the structure of a person’s semantic and factual knowl-
edge certainly constitute learning, but rigorous theoretical analyses of such
processes have not yet appeared. Another limitation on this review is imposed by
the fact that nearly all quantitative theorizing during the last decade has dealt
with the storage and retention of verbal information; we therefore have little to
say about either animal learning or about the learning of skills. Animal learning
has received limited attention by quantitatively oriented theorists during the last
decade, and although quantitative analyses have been carried out with respect to
the properties of skilled performance, we are aware of very little quantitative
theorizing on the acquisition of skills, with Timpe’s work (223-225) being the
main exception that we know of. '

On the question of what constitutes a “mathematical” learning theory, we are
neither certain of our criteria, nor do we think, in spite of our efforts, that we have
been completely consistent. In general, we have assumed that mathematical
theories consist of hypotheses stated in a relatively formal way together with im-
plications drawn from those hypotheses by means of mathematical reasoning.
Nearly all of the quantitative theorizing covered by our review employs either
probability theory or computer programs as the mathematical basis. But the rela-
tive importance of mathematical work in a contribution to theory varies a great
deal. We are aware that other reviewers would probably apply quite different
criteria for inclusion in this area. Since we are primarily interested in learning
theory rather than mathematics, we think we have been quite conservative in ex-
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cluding “nonmathematical” contributions, but it seems certain that others would
include some of the contributions that we have failed to mention.

The remainder of this review presents our impression of the current state of
theoretical understanding of learning processes as represented in relatively rigor-
ous (i.e. “mathematical’’) theories. Our discussion in the next section is organized
around the question: What is learned ? Our discussion is focused on the problem
of representing what is stored during learning, but we also comment briefly on
the influence of forgetting and retrieval processes on acquisition and performance.
In the third section we review theoretical analyses of specific varieties of learning,
and in the final section we close by reviewing some analyses of formal properties
and statistical methods.

WHAT IS LEARNED?

As an outcome of learning, information is stored in memory that was not
there before, or some structure of knowledge is modified. Theoretical representa-
tions of what is stored during learning seem to be of two kinds: either information
stored in memory is assumed to consist of representations of the items studied, or
the contents of memory are assumed to be a set of rules for generating a response
or a series of responses. The difference may be more apparent than real. We sup-
pose that theorists who refer explicitly only to storage of item representations are
being elliptical, since it is obvious that there must be some procedure for translat-
ing the stored information into responses. On the other hand, theories assuming
that rules for response generation can be learned without any concomitant learn-
ing of item information tend to overlook the evidence that subjects can often
respond correctly on tests that require the retrieval from memory of information
about specific items.

ITEM REPRESENTATIONS

Storage.—~Theories that assume items rather than rules are stored vary on two
dimensions. One dimension is whether items are assumed to exist in memory ina
unitary way or are assumed to have a more complex representation, usually in-
volving feature or attribute descriptions. A second dimension is whether the
representation in memory is all-or-none or varies in strength along some discrete
or continuous scale.

In the simplest combination of assumptions, an item is stored as 2 unit, and
storage is an all-or-none process. This assumption is made in the all-or-none
Markov models in which the learning of an item consists of a discrete change in
state. The simplest case involves a two-state system in which the only distinction
made is whether an item is learned or unlearned (27, 64). To analyze certain kinds
of transient effects, a third state has been introduced corresponding to STM. An
item may be stored in STM temporarily after study, with some probability of re-
turning to the unlearned state. Entry into the learned state corresponds to achiev-
ing a record of the item in LTM (7, 86, 121, 235). Unitary , all-or-none storage is
also assumed in analyses based on queuing theory (28, 183), where STM is as-
sumed to consist of a queue of items waiting to be processed, and storage in LTM
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results when an item is processed, which occurs when the item reaches the first
position in the queue. In his fixed-point model, Murdock (153, 154) also assumes
all-or-none storage, but whether an item is retrievable or not after a given reten-
tion interval is determined by a fluctuation process assumed to reflect the interac-
tion of forgetting and reminiscence.

- Another class of theories assumes that storage involves the representation of
an item in a unitary way, but that the strength of the representation is a variable.
In one version, used by Bernbach (17, 18), storage consists of creating copies of
an item, so an item may be represented by any number of copies in memory. In
Bernbach’s theory there is no separate system of STM, but the probability of
adding copies by rehearsal decreases with time after an item’s presentations, due
to the increasing chance that all the copies of the item have been lost. Another
theory that assumes unitary storage with varying strength is Wickelgren’s (237)
trace theory. Wickelgren assumes that the representation of an item consists of
several traces, each varying in strength as a function of time since the item was
studied. The several components of the memory system (Wickelgren assumed
there are four) are represented by traces with different rates of consolidation and
decay. Another variation was given by Atkinson & Shiffrin (9), who assumed that
occupancy of STM is all-or-none, with a finite upper limit on the number of items
that can be in STM at any time. Storage in LTM is assumed to involve representa-
tion of unitary items, but the strength of the representation is a continuous vari-
able referred to as the amount of information in LTM for an item, with the
amount of information transferred to LTM being proportional to the amount of
time that the item was in STM. The idea that recognition depends on a decision
process based on the familiarity or strength of an item’s trace also uses the idea
of a unitary variable-strength representation (16, 50, 100, 122, 146, 172, 238).

The second main alternative assumption about storage is that the representa-
tion of an item is not unitary but consists of a representation of some of its fea-
tures. The simplest analyses using this idea are the N-element models of stimulus
sampling theory (70, 214) where it is assumed that a stimulus situation consists of
many elements or presents different potential perceptual patterns. At a specified
stage of learning some proportion of the elements or patterns are associated with
a given response in the subject’s memory; at the limit, if a single response has
always been paired with the stimulus, all the elements or patterns of that stimulus
are represented in memory in association with the response. The assumptions of
the mixed pattern-components model (8, 81, 83) are that all the components of a
stimulus are connected with a response in memory, and if a subset of one or more
of the original components appears as a test stimulus, the response will be per-
formed. Thus the mixed model includes the implicit assumption that stimulus
features or components are represented in memory. In a similar way, Bower’s
(29) multicomponent theory of the memory trace assumes that a set or vector of
stimulus properties is stored in memory. Bower’s analysis deals with the process
of losing elements from the stored vector through decay or interference during a
retention interval and thus differs from the analysis given in stimulus sampling
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theory, which deals with the process of building a set of stored components during
training,

In a sense, the fluctuation model formulated by Estes (60, 61) provides a theory
of memory storage that generalizes the two ideas given in ordinary stimulus
sampling theory and in Bower’s multicomponent analysis, since the fluctuation
model considers the process of storing a set of component associations for a
stimulus as well as the loss of those components over a retention interval. In the
fluctuation model, Estes assumed that a subset of the potential elements for a
stimulus are available for association with response in any situation, but over a
retention interval the elements in the available subset are exchanged with elements
that were unavailable originally, thus causing elements associated with the re-
sponse in memory to become unavailable at a later test. Elements are not perma-
nently lost in the fluctuation model; they may fluctuate back to the available set
at a later time.

In some theories dealing with stimulus features, properties of certain features
have been specified. In a theory given by Restle (187) representation of an item
initially stored in memory may not be distinctive enough to permit discrimination
from similar items. The representation needed includes the feature that dis-
tinguishes between similar stimuli or responses. Another theory specifying the
nature of features represented in memory was given by Laughery (137), who spe-
cified a set of visual and acoustic features for letters and numerals and assumed
that these are stored as part of one’s permanent knowledge. Laughery’s theory,
like Bernbach’s described above, does not distinguish between STM and LTM as
separate systems. In Laughery’s analysis, acoustic features of presented items are
represented in memory and are updated and strengthened by rehearsal. Another
theory that assumes a representation of features in the subject’s permanent
knowledge was given by Norman & Rumelhart (161). Their theory of storage uses
the idea of contextual association; they assume that when an item is recognized
in study, its features are tagged in memory showing the context in which it was
presented. The information stored in memory according to Norman & Rumel-
hart’s theory consists of associations between features of items and contextual
tags. Association between features or properties and responses is the assumed
nature of information storage in classical discrimination learning theory of the
Hull-spence variety (207, 241). Other kinds of information assumed to be stored
about an item include the frequency of its occurrence (20) and the time of its
occurrence (202, 203), and the relative position of the item on some quantitative
scale such as size (30).

Forgetting.—Forgetting is not a concern of this review except to the extent
that it influences acquisition processes. Several different types of interactions be-
tween acquisition and forgetting are found among different theory types. In those
theories assuming a unidimensional memory trace that varies in strength or num-
ber of stored elements, it is natural to assume that forgetting consists of a loss in
strength or number of stored elements. After a series of learning trials, perfor-
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mance is determined by the net effect of the acquisition of strength on the learning
trials and the loss in strength between learning trials. This interpretation of the
interaction between forgetting and acquisition, although quite appealing intui-
tively, has the considerable defect of being nearly always completely wrong in its
predictions of the effects of the temporal spacing of learning trails. Given any
reasonable learning operator, such an interaction leads to the prediction that
learning is optimized when the spacing between trials is minimized [for a discus-
sion of this issue, see Bjork (23)].

In models in which what is stored can be in more than one memory state, such
as STM and LTM, or available and unavailable, the interaction between for-
getting and acquisition is more complex. Under some circumstances the interac-
tion can be such that long-term learning profits from short-term forgetting. This
kind of interaction can occur in models of the rehearsal-consolidation type (9,
132), of the stimulus fluctuation type (60), and of the multistate Markov type
(86). In these theories, increased forgetting between any two learning trials re-
duces performance at that point in the learning process, but long-term learning
may profit from either increased consolidation of long-term memory as the tem-
poral spacing between two learning trials is increased, or from improved long-
term acquisition on the second of the two learning trials. Long-term acquisition
might be facilitated on the second learning trial in two ways. First, the number of
formerly unconditioned and unavailable stimulus elements that become available
and conditionable through fluctuation could increase with the temporal spacing
between trials. On the other hand, the probability of transition from a forgotten
state to long-term memory could exceed the probability of transition from short-
term memory to long-term memory, and a longer interval between two learning
trials would decrease the likelihood that an item would remain in short-term
memory at the time of the second learning trial.

Retrieval —In the foregoing theories of representational storage, retrieval
processes sometimes do and sometimes do not play a major role in determining
performance. When an item is assumed to be stored as a unit, there is not much
basis for a theory of retrieval, although retrieval probability might be assumed to
vary with number of copies stored, or, under the assumption that an item be
stored as a unit in one or more different memory states, retrieval of an item might
be assumed (89, 243) to vary with ifs state in memory.

When an item is assumed to be stored in terms of its features or trace strength,
there is a natural basis for specifying retrieval mechanisms. Given that a feature
list in memory incompletely specifies an item, different assumptions about the
retrieval process yield different predictions of both frequency and types of esrors
on tests of recall and recognition (29, 137, 161). If a memory trace is assumed to
vary in strength on a continuum, recall and recognition may be assumed to de-
pend on decision mechanisms, such as that embodied in the theory of signal
detectability (238, for example).

When judgments of list membership, recency, or frequency of occurrence are
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required, retrieval mechanisms play a critical role. There is no reason to expect
that the retrieval mechanisms involved in such judgments tend to be simple; it
is almost certain that comparisons among items, judgments of strength, relative
position in structural organization, and encoded tags and labels are all involved.

Comments on alternative assumptions.—A review of alternative theories in-
evitably raises the question of which is correct. On the dimension of unitary rep-
resentation versus representation of features the question is easy to answer. A
theory that assumes representation of components or features of stimuli is more
general than a theory assuming that each stimulus record is unitary, and several
well-known facts about memory indicate that the more detailed assumption is
needed in many situations. Any process of selection or variability of encoding
must operate on a basis of multicomponent representation of some kind, and the
operation of selective and variable processes in encoding seems quite well estab-
lished. On the other hand, assumption of unitary representation is a useful special
case of the more general idea, and can be used to represent the process of learning
in many situations where the complicating factors of selection and variable encod-
ing can be neglected.

The issue regarding all-or-none storage versus variable strength in the memory
representation is considerably harder to evaluate. Even when unitary representa-
tion is assumed, it turns out, as Restle (188) showed, that all the properties of
observable performance produced by all-or-none learning can be mimicked by a
system in which learning is gradual, performance depends on a threshold, and an
appropriate distribution of individual differences exists. This means that a defini-
tive choice in favor or all-or-none learning cannot be made on empirical grounds,
since the all-or-none hypothesis is empirically equivalent to a special case of
gradual learning. If it is assumed that representation involves features of items,
the issue becomes even harder to decide, since even if all-or-none storage of in-
dividual features is assumed, the possibility of partial representation implies that
learning of items may not be all-or-none in nature. The question of deciding
whether representations of individual features are stored in an all-or-none fashion
involves the same formal difficulties as apply to that question regarding individual
items, except that the decision has to involve several theoretical entities instead
of just one.

While a definitive empirical case for the assumption of all-or-none storage
seems unattainable, there appear to be strong theoretical and methodological
reasons supporting the use of that idea. The main advantage of the all-or-none
idea is that it is testable in Popper’s (178) sense and therefore can serve as the
basis of theoretical advances in which changes in the theory are guided directly
by empirical evidence. Thus it continues to seem preferable to view cases in which
storage of information appears to occur in a gradual fashion as cases in need of
more detailed analysis, as Estes (66) suggested in 1964, This attitude has led to the
analysis of several tasks as combinations of all-or-none processes. On the other
hand, analyses based on the weaker assumption of gradual changes in strength of
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representation undoubtedly will continue to provide useful information, and re-
sults obtained under the two kinds of assumptions probably can be related to each
other in future analyses.

GENERATIVE REPRESENTATIONS

Storage—In many theories the information stored in memory is in the form
of rules for selecting or generating responses, rather than representation of events.
The case studied most intensively involves rules for classifying stimuli in concept
identification, but considerable analysis has also been given to the structure of
sequential concepts, where the stored rule is a means of generating a sequence of
responses.

In the case of classification, the outcome of learning is a rule or strategy that
assigns a response to each stimulus in the set used in the experiment. There are
two questions about what kind of information is stored in memory. First, what
is the form in which the rule or strategy is represented ? This is the direct question
of what is learned in concept identification. The other question is, what kind of
information is held in memory during learning? This second question involves
issues about the retrieval of information from the store of permanent knowledge
as well as the kind of information held in STM for use in processing information.

Regarding the first problem as to the way classification rules are represented,
there have been two main assumptions. One assumption is that a concept is
stored in the form of a list of properties, along with the name of the concept
(116, 184). A second assumption is that the relevant properties of the concept are
stored as a rule for making a series of tests and a decision (108, 109). For example,
if a subject has learned that the concept GAX refers to the category of large, blue -
stimuli, the list representation could be in the form “GAX: large, blue,” com-
bined with the response rule that all entries on a property list should be matched
by a stimulus for the name to be assigned (184). On the other hand, a decision
tree for this concept might be:

Test color ; if blue, proceed; if not blue, respond “not GAX.”

Test size; if large, respond “GAX;” if not, respond “not GAX.” The differ- -
ence is obviously one of notation. The list of properties and an appropriate
response rule lead to the same performance as the decision tree. In fact, any de-
cision tree for a concept can be represented as a matrix in which each row is a list
of properties (112). In the simplest case of concept identification, involving a
single relevant attribute, some theories refer to selection of an attribute and as-
sociation with a response as separate processes (32), while others refer to the
selection of a strategy, which specifies a response for each stimulus in the set being
used (185). The difference does not seem to be a substantive one. In more complex
situations that require learning to classify patterns that have variable features,
theorists have assumed that the importance given to the different features is
modified on the basis of information received during learning. Thus the outcome
of learning not only involves selection of attributes for testing, but also involves
setting weights on the various tests for deciding to which category a presented
pattern belongs (151, 200, 230), or in evaluating one’s position in a game (198).
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The issue as to the kind of information held in memory during processing does
involve assumptions that differ in a substantive way. In several theories, the sub-
ject remembers a set of stimuli and their response assignments, and hypotheses
about the concept are selected on the basis of scanning the remembered set of
stimuli (45, 111, 116, 152, 227). In other theories, information is held in STM in
the form of a list of hypotheses that are being considered (79, 118, 157, 185, 228)
and there may also be memory for hypotheses that have been eliminated from
past samples (10, 57, 96, 239). Chumbley (40) obtained experimental evidence on
the question favoring the idea that it is hypotheses that are stored, rather than
representations of stirnuli.

Regarding the question of accessing information from permanent storage,
nearly all theories have assumed a constant set of descriptors (for the stimulus-
representation models) or possible hypotheses (for the hypothesis-list models)
used by the subject during learning. When information is taken from permanent
storage (usually when the current list of hypotheses is exhausted, or when an error
in classification is made) the selection from the set in permanent storage is usually
assumed to be random, with fixed probabilities for the various possible hypoth-
eses. One interesting exception is the hypothesis of Falmagne (74, 75), who as-
sumed that the sampling probability of an hypothesis is increased on trials when
that hypothesis is consistent with information given, and decreased when it is
inconsistent.

The assumption that what is learned is a rule for generating responses, rather
than a representation of events, has been postulated in several theories about the
learning of lists of verbal materials. One straightforward case involves lists of
paired associates that include sets of similar stimuli paired with a single response.
These tasks permit the subject to group items and use a rule of the form, “Give
response R to stimuli with property P,” in a fashion similar to standard concept
identification. Theories dealing with this rule-learning aspect of associative learn-
ing have been developed. Batchelder (11, 12) developed the idea of a classifica-
tion rule explicitly in his theory; other investigators have dealt with the problem
by postulating various mechanisms of transfer between similar items represented
in memory (8, 81-83, 92, 186, 187). Another possibility regarding list learning is
that the subject’s knowledge about the entire list is acquired in the form of a dis-
crimination net. This idea, proposed by Feigenbaum (76) and used in an extensive
study by Hintzman (101), proposes that information about a list is stored in the
form of a decision hierarchy with each node of the tree being a test on some at-
tribute of items in the list. The selection of response depends on the outcome of
the series of decisions, just as in the analyses of concept identification described
above.

Another important use of hierarchical representation of the outcome of learn-
ing has been in analysis of serial learning. Feigenbaum & Simon (78) used the
idea of a discrimination net to represent the sequential learning that occurs when
a person learns a list of words. Analyses of the acquisition of sequential concepts
when subjects are shown series of numbers, letters, or patterns of switch settings
have been given in a number of investigations (95, 189, 190, 204, 233). The various
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analyses share important features, A process of encoding relationships between
elements is assumed, often involving the formation of units based on short sub-
sequences. Then rules for combining the subunits are acquired, resulting in a
hierarchical structure of rules for generating the sequence. Evidence obtained by
Bjork (22) suggests the pleasant possibility that in at least some nontrivial cases,
storage of components of a hierarchical structure is all-or-none in nature.

Forgetting—In some generative representations, the structure that must be
acquired is complex enough that forgetting can be assumed to influence both
performance and the ongoing acquisition of the representation. Very often this
is not the case; many of the typical concepts, rules, or structures involved in
experiments are simple enough that they do not pose memory problems—for ex-
ample, a concept such as “Give response R to stimuli that are red” is not difficult
to remember. In the case of certain sequential concepts (22), however, and in the
case where what is acquired is a tree structure or discrimination net (101), retain-
ing the representation in memory is not trivial and may influence heavily the
acquisition of the representation.

Even in those cases where the generative representation to be learned poses
no memory problems in itself, the retention of the information content contained
in a series of learning trials may constitute a significant memory load. Acquisition
in such situations may, therefore, depend on memory in an indirect but critical
way; the decisions, tests, and other operations involved in the learning of a gen-
erative representation can be effective only to the extent that the item information
necessary for learning to take place is retained. The importance of memory for
specific items is sometimes nullified procedurally by providing subjects with dis-
plays that relieve them of retaining such information (204).

Retriepal —When what is stored is generative in form, retrieval from memory
does not tend to be a problem. Given that a response rule has been learned, re-
trieving the response is typically straightforward, with two possible exceptions.
One exception is in the learning of sequential concepts, in which case generating
the series of responses required may be subject to failures of retrieval from
memory. A second and more interesting case is the learning of lists of verbal
materials by means of the storage of tree structures. In such cases retrieval be-
comes very important, especially in the case where the structure is incomplete.
Both frequency and types of errors are influenced heavily by what is assumed
about the tests and decisions involved in the retrieval process.

ANALYSES OF SPECIFIC LEARNING TASKS

The discussion in the preceding section deals with general principles that are
postulated in current mathematical theories of learning. Any application of those
principles takes the features of a specific learning task into account and specifies
the processes of information storage, retention, and retrieval that occur in the
situation being analyzed. Of course, the various experimental situations that have
been developed for the study of learning provide information about different
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aspects of the learning process. The theoretical framework that we have adopted,
described at the beginning of this review, has consequences for the interpretation
we give of results obtained in various experimental settings. Within that frame-
work we now review published analyses of various tasks, and while this kind of
review inevitably takes on something of the character of a catalogue, we hope to
indicate relationships between these specific analyses and the substantive issues
discussed earlier.

LEARNING TO RECOGNIZE

Discrete state models—When a list of items is shown and later tested for
recognition, information about learning is obtained with minimal requirements
on the subject for retrieval of information. Kintsch & Morris (125) analyzed
multitrial recognition learning of trigrams and obtained data agreeing with the
all-or-none learning model. Kintsch (121) and Olson (171) investigated effects of
varying intervals between presentations of items during recognition, and obtained
results compatible with the all-or-none model, elaborated by the addition of a
state representing short-term memory. Although Olson (171) found some evidence
that items could be lost from LTM, it is a good approximation to assume that
when subjects study items in recognition learning, each trial provides an oppor-
tunity for a stable, distinctive representation to be stored in LTM, and failing
that, a representation is held in STM for a time.

Analyses based on decision theory.—While performance in multitrial recogni-
tion learning has the all-or-none property, an important factor is that subjects
give just “yes” or “no” responses in that experiment. When subjects also give
confidence ratings about their responses, a more complicated process is involved.
Ideas taken from the theory of signal detectability have been used, assuming that
the strengths of memory traces or feelings of familiarity vary among items stored
in memory, and judgment of confidence indicates the amount of this strength or
familjarity. The strengths of new or distractor items have a distribution analogous
to the distribution of likelihood ratios on noise trails in detection. In analyses by
Parks (172) and by Wickelgren & Norman (238) strengths of presented items are
greater, on the average, and the amount by which the mean strength of presented
items exceeds the mean of the distractor distribution depends on the time since
presentation.

Freund, Loftus & Atkinson (80) analyzed recognition performance on num-
ber-letter pairs, using Atkinson & Shiffrin’s (9) model of the storage of informa-
tion about items in memory. The model includes an assumption that the amount
of information stored is proportional to the time an item resides in STM, and the
amount lost is proportional to the time elapsed between storage and test. Two
alternative assumptions about retrieval were compared. It appeared preferable to
assume that the amount of information determined a value of d’ for a decision
process like that used in the theory of signal detectability rather than to assume
all-or-none retrieval of items with the probability of retrieval determined by the
amount of information retained. Donaldson & Glathe (50) also discussed applica-
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tion of detectability theory to analysis of recognition and recall, especially regard-
ing interpretation of the value of @’ obtained in recall performance.

In analyses by Bernbach (16, 19) and Kintsch (122) a single distribution of
strengths associated with items with stored representations is assumed. An item
that has been presented has some probability of being stored, and as other items
are presented and tested there is a possibility that the stored representation is lost.
Thus in this analysis some of the presented items have strength taken from the
distribution of stored items, and others come from the same distribution as new
items. Kintsch’s (122) analysis adds the feature that if an item’s stored representa-
tion is sufficiently strong, it will not drop down into the initial distribution—in
other words, it enters the learned state of the Markov model of learning.

Analyses assuming storage of features.—Further analyses of recognition have
been provided, based on the idea that an item’s representation in memory is a
partial list of features. In his presentation of the multicomponent model, Bower
(29) gave analyses of several kinds of recognition experiments, using the idea that
some features of an item’s representation are lost during a retention interval.
Response on a recognition test depends on the number of features of a test item
that match features retained in memory, relative to a criterion that the subject
has, or compared with the number of matching features of other items presented.
A related analysis given by Norman & Rumelhart (161) assumes that storage
consists of tagging features of the studied item with context information. During
a retention interval in which other items are presented, some of the tags of an
item’s features are tagged by new contexts and this produces uncertainty about
the item when it is tested. In a test of recognition, the features of the tested item
are scanned, and response depends on the number of features found with ap-
propriate context tags.

Simulations of recognition—Computer simulations of pattern recognition
have provided important contributions to theory about the processes involved in
learning to recognize. Hunt’s (110) review presents a recent summary of the main
ideas. Two hypotheses are particularly interesting for the theory of learning. One
is that learning to recognize a character involves storing the features of each char-
acter presented during learning and computing the probability that a given fea-
ture comes from each character in the practice set. These probabilities are used
when a test character is presented to make a decision about which character is
being shown (200). A second idea is that characteristics consisting of local pat-
terns are stored as a feature list for each character that can be recognized. Recog-
nition involves an effort to match the stored characteristics with features of the
presented character, and experience with known characters leads to adjustment
in the weights given to the various characteristics in the decision about what char-
acter is being shown (230). General discussions of pattern recognizing systems and
their learning capabilities have been given by Nilsson (159) and by Minsky &
Papert (151).
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LearNING To RETRIEVE LisTs

Free-recall memorizing—Analyses of performance in free-recall memorizing
by Kintsch & Motris (125) and by Waugh & Smith (236) have shown that memor-
izing items for recall is not all-or-none in nature, and that a two-stage Markov
model gives an acceptable account of the data. After recognition pretraining, re-
call memorizing was an all-or-none process, suggesting that the whole process of
memorizing for recall involves a first stage of storing a representation of the item,
followed by a stage of learning to retrieve the item from memory.

The idea that stored representations involve features of items has been used in
analyzing recall. In Bower’s (29) model it is assumed that each item in memory is
recalled if enough of its features are retained to satisfy a recall criterion. Missing
features are filled in by the subject. A similar analysis of recall was given by Nor-
man & Rumelhart (161), who assumed that in a recall test context information is
made available and memory is accessed to find features of items studied in the
context. If a sufficient number of features are retrieved to spedify an item uniquely,
the subject gives that response. Otherwise, no response is given or the subject
guesses.

Other discussions of recall by Kintsch (124) and Shiffrin (202) use the idea
that items are stored in memory in a format involving features, including informa-
tion about the time of study, and these features serve as a basis for search and
retrieval of items. Cowan (47) gave a rigorous analysis of retrieval in the case
where items are taken from two categories, based on the idea of differing associa-
tive strengths between items. And Albert (1) has analyzed interresponse times in
the output of a learned list in terms of a linear death process, which he applied in
a continuous form and also as a discrete-time urn model.

The role of short-term memory.—The role played by STM in memorizing for
recall has been investigated in several studies. A major achievement of these
analyses has been the development of a rigorous explanation of the serial position
effect. Primacy is explained by the occurrence of extra processing of items studied
at the beginning of the list, when STM is relatively uncrowded. Recency is ex-
plained by the fact that items studied at the end of the list are likely to still be in
STM at the time of the test. Particular models embodying this general explana-
tion differ to some extent. Waugh & Norman (235), Atkinson & Shiffrin (9),
Norman & Rumethart (161), Bower (28), and Reitman (183) assumed that STM
is a discrete stage of processing, while Bernbach (17, 18) and Laughery (137)
postulated a single memory system with a rehearsal process that has the property
of making rehearsal more likely for recently presented items. Another difference
is that Norman & Rumelhart (161) and Laughery (137) assumed that items are
represented in STM as feature lists, thereby providing an explanation for effects
of similarity, especially regarding intrusions. An alternative analysis of the serial
position effect, based on concepts of retroactive and proactive inhibition, was
given by Kuno (131). And Thomas (222) analyzed setial position effects with con-
cepts from information theory,
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Serial recall —When the subject’s task includes recalling items in the order of
their presentation, theoretical analysis requires assumptions about the way in
which information about order is stored and retrieved. In Laughery’s (137) model,
the data structure representing each item includes a substructure that holds the
name of the following item. Thus order information is represented as a feature,
capable of being lost from memory in the same way as other features of the item.
Feigenbaum & Simon’s (78) analysis of serial recall, based on the idea of a dis-
crimination net, assumes that when a series of tests has been carried out, terminat-
ing at a node containing a response image, information that is stored along with
the response image specifies the series of tests to be conducted to obtain the next
item. And Lander (134, 135) has analyzed interassociations in serial learning from
the standpoint of McGeoch’s remote associates hypothesis.

Serial pattern learning —We have all been aware, at least since Lashley’s (136)
convincing argument, that performance of many serially ordered tasks depends on
an organization more sophisticated than item-to-item linkages. Vitz & Todd
(233) have analyzed learning of binary sequences, concluding that events are
encoded as runs of homogeneous events, and the structure that is acquired is a
hierarchy involving runs of runs at each level. Restle (189) and Restle & Brown
(190) have analyzed serial pattern learning of sequences of the numbers 1-6. Sub-
sequences of short runs (e.g. 2345) and trills (e.g. 2323) are frequent bases of en-
coding, and sequences with hierarchical structures of these subunits are easily
learned. Hierarchical structures are formed when movement from one subunit to
the next can be accomplished using a transformation such as repetition, trans-
position (repeat the subunit with each element moved up or down by some fixed
amount), or reflection (repeat the subunit, but with each element replaced by the
element equally far from the opposite end of the array).

Simon & Kotovsky (204) analyzed the induction of a pattern from part of a
letter sequence, postulating that subjects induce rules for generating the sequence
based on relationships of identity and adjacency in the alphabet between entries
in the sequence that are adjacent, or separated by one, or by two, and so on.
Gregg’s (95) analysis of sequential concept acquisition using patterns of switch
settings provided information about the ways in which relations between patterns
are encoded, as well as generating rules varying in complexity. Gyr, Brown &
Cafagna (97) investigated models for inducing sequential patterns differing in
the level of abstraction of hypotheses considered by the subject. Bjork’s (22)
analysis of the learning of arithmetic sequences assumes that rules induced by the
subject may be constant (add or subtract n) or advancing (add or subtract one
more than last time), and each component rule in the sequence is added to cogni-
tive structure in an all-or-none fashion. :

LEARNING TO RETRIEVE ITEMS ON CUE

After a paired associate is memorized, the subject is able to retrieve and per-
form the response term of the pair when the stimulus term is presented. Recent
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studies, following on prior analyses showing that in many experimental proced-
ures memorizing of paired-associates is approximately an all-or-none process
(see Estes 66), have provided more detailed analyses of the process of memorizing,
or have considered situations in which the learning process has more than one
stage.

The role of short-term memory—Several analyses using the concept of re-
hearsal in STM have provided information about the way in which subjects
adjust rehearsal procedures in relation to aspects of the learning situation. In
continuous memorizing when the response for a stimulus is changed, the new
item replaces the old one in STM, providing little interference with rehearsal of
other items, although when an item with a new stimulus replaces the tested item
it has approximately the same interfering effect as a new item (6). With a pro-
cedure requiring overt rehearsal, subjects enter all items in STM, and effectiveness
of rehearsal is improved in the sense that the rate of information transfer to LTM
is increased (9). A particularly interesting result was obtained in an experiment by
Loftus reported by Atkinson & Wickens (10). Procedures were compared in which
subjects either had to recall a letter response or had the easier task of selecting one
of two alternative letters presented to them. The analysis indicated that with the
two-choice procedure, subjects held only one item in STM at a time, entered
nearly all presented items into STM, and rehearsed relatively efficiently; while
with the recall procedure, subjects held about three items in STM at a time, about
one-half of the items presented were not entered in STM, and rehearsal was less
efficient.

As an approximation, STM can be represented as a Markov state, with an
item assumed to occupy that state as long as it is in STM (7). This idea has been
used in analyzing the greater difficulty of learning paired-associate items in longer
lists (39), in analyzing perseverative errors in associative learning (14) and verbal
discrimination (36), and in investigating the effect of spacing between the presenta-
tions of an item (23, 86). To analyze the effects of test trials given at varying inter-
vals after study, Young (243) has postulated a system with two levels of STM, one
of which involves probabilistic retrieval, and Izawa (114) has used the assumption
that test trials may potentiate the effect of later study trials by causing unavailable
stimulus elements to become effective.

Assumption of two learning stages—In especially systematic and thorough
empirical comparisons of alternative assumptions about paired-associate memor-
izing by Atkinson & Crothers (7) and by Cotton et al (46), results have shown that
learning in some situations produces at least three levels of performance. Data in
the form of sequences of errors and correct responses are unable, however, to
support decisions between models differing in the subtler details of the way in
which the performance levels are achieved. Suppes, Groen & Schlag-Rey (215)
found that a model postulating at least two stages of learning was also required
to analyze the latency of response during paired-associate memorizing. And
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Kintsch (120) showed that a two-stage analysis could be used to analyze some of
the cases in which Rock’s (193) replacement procedure fails to yield results ex-
pected from the all-or-none assumption.

Analyses involving two postulated stages of learning are especially useful if
there are hypotheses and supporting empirical results that specify the nature of
the stages. One class of analyses has considered stages of learning relating to
responses. Crothers (48) analyzed learning of associations with compound re-
sponses; the stages of learning corresponded to associating the response com-
ponents with the stimulus. Bower & Theios (31) analyzed learning after change of
response for a paired associate, where the first stage was unlearning the first as-
sociation, made incorrect by the response change. Millward (149) and Nahinsky
(156) examined a learning system in which the subject learns not to give certain
responses that are incorrect, thereby improving performance prior to learning the
correct association. Wolford (240) has assumed that forward and backward as-
sociations are stored, each in an all-or-none fashion. This idea provides an ex-
planation of recognition and recall of either stimuli or responses.

Another class of hypotheses has attributed multiple stages in learning to re-
quirements for discrimination between items in retrieving stored associations.
Restle (187) proposed a two-stage theory in which the first stage is storage of an
engram or representation of an association and the second stage is the formation
of a distinctive trace, based on discovery of a discriminative feature. Polson,
Restle & Polson (175) used the theory for analyzing a situation where confusions
occurred between specific pairs of items, so that errors in the second stage were
identifiable as responses to items similar to the one tested. Analyses using the
mixed pattern-components model (8) have converged to a similar interpretation.
Friedman & Gelfand (81) analyzed performance on tests after study of stimuli
having shared components and different responses. The main hypotheses involve
retention of association between stimulus patterns and their responses. Friedman,
Trabasso & Mosberg (83) concluded that the learning of an item has two stages,
and in the intermediate state there is uncertainty in the retrieval process if there
are other items with some of the itemn’s stimulus components. The completion of
learning involves storing a representation of the association in which the stimulus
is an integrated pattern, thus discriminating it from other similar stimuli.

In comparing recognition and recall performance after study of paired as-
sociates, Estes & DaPolito (69) obtained results consistent with Kintsch &
Morris’ (125) idea that one stage of learning allows the subject to recognize the
item, but that a second stage may be needed to permit retrieval. Results obtained
by Humphreys & Greeno (107) led to a further hypothesis that the first stage is
storage of a representation of the stimulus-response pair as a kind of Gestalt unit,
and the item is made reliably retrievable in the second stage. While this idea is
consistent with certain findings obtained when resuits of negative transfer experi-
ments are analyzed (89, 90), there are also experimental results supporting the
alternative view of Underwood & Schulz (232) that the two main stages of associa-
tive learning are response acquisition and acquisition of stimulus-response con-
nections (see Underwood 231).
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Analyses of discrimination.—Several analyses, some mentioned above, have
recognized stimulus discrimination as an important factor in paired-associate
memorizing. Some investigators have proposed specific hypotheses about the
process of discrimination learning. Bower (30) analyzed learning of paired associ-
ates whose stimuli are ordered on some linear dimension such as size. He showed
that serial position effects that are obtained can be explained by assuming that
the effective stimulus is a quantity corresponding to the magnitude of the nominal
stimulus relative to the adaptation level determined by the set of stimuli. Bower
also considered implications for learning and transfer of the idea that ordered
stimuli are represented in a cognitive structure that has the general properties of a
linear ordering.

Analyses of paired-associate memorizing based on the concept of a discrimina-
tion net have been given by Feigenbaum (76) and by Hintzman (101). Hintzman's
analysis was particularly thorough and systematic, and had the especially useful
feature of exploring the limits of the concept of stimulus discrimination in analyz-
ing variables that influence difficulty of paired-associate memorizing. For ex-
ample, it appears that appropriate assumptions about stimulus discrimination are
sufficient to explain a variety of effects involving the number of response alterna-
tives, spacing between presentations of an item, and interactions between amount
of practice and interference of both the proactive and retroactive varieties But
effects of list length on learning difficulty and some salient facts about negative
transfer appear to require explanation involving other kinds of mechanisms.

Stimurus-Response CONDITIONING

While studies of classical and instrumental conditioning have not enjoyed re-
cently the popularity they had in years past, investigations of considerable sig-
nificance and interest are still being conducted. Research based on quantitative
models has been carried out on eyeblink conditioning, escape and avoidance con-
ditioning, instrumental conditioning, and discriminative conditioning.

Epyeblink conditioning—Eyeblink conditioning in rabbits was studied by
Theios & Brelsford (220), who found that response sequences had the properties
implied by a two-stage Markov model of the learning process. In eyeblink condi-
tioning with human subjects, some results agree with the Markov model proposed
by Bower & Theios (31), but Prokasy and his co-workers have found a slightly
more complex form of the learning process—one in which performance remains
at its initial level for some number of trials, then improves by an incremental
process toward asymptotic performance. A model originally introduced by Nor-
man (162) has parameters that give four measures of performance and learning:
the initial level of performance, the number of trials before performance begins
to change, the rate of change in performance once it starts changing, and the
asymptotic level of performance. The model has been applied to analyze effects
of the intensity of an unconditioned stimulus (180), as well as effects of inter-
stimulus interval and the difference in performance between subjects classified as
voluntary and involuntary responders (181). The model has also been useful in
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separating the learning and performance effects of certain drugs on conditioned
responding in rats (234).

Shock-escape and avoidance conditioning.—The two-stage Markov model has
also been used in analyzing shock-escape training (31, 216), and has provided an
analysis of the effects of overtraining and successive reversals on reversal learning
in a shock-escape T-maze (217). The process of conditioning an avoidance re-
sponse also has been studied with the two-stage Markov model (31). Theios &
Brelsford (221) found evidence that the first stage of learning is the conditioning
of the instrumental response of running when frightened, while the second stage
involves storing a permanent record of the association between the conditioned
stimulus and the emotional arousal response. A series of experiments conducted
by Brelsford (33) tested specific implications of Theios & Brelsford’s interpreta-
tion of avoidance conditioning, and provides excellent examples of the way in
which specific quantitative theorizing can generate innovative experimental pro-
cedures as a means of providing strong tests of hypotheses. Theios (219) has
provided an informative review of analyses of aversive conditioning carried out
in his laboratories.

Gibbon (85) has investigated free-operant avoidance in some detail, with par-
ticular emphasis on how asymptotic responding is sustained. In his view, asympto-
tic bebavior can be treated as a combination of reconditioning and extinction, and
he derives predictions of both interresponse and intershock intervals on the basis
of a finite state (semi-Markov chain) interpretation of behavior at asymptote.

Instrumental conditioning—Norman (163) analyzed instrumental conditioning
as reflected by changes in interresponse time distributions as a function of sched-
ules in which reinforcement probability is contingent on interresponse time. In
his analysis of asymptotic interresponse time distributions under random ratio,
variable interval, and DRL-like schedules, Norman assumed that nonreinforce-
ment of a response increases the likelihood of long interresponse times, and that
the reinforcement of a response characterized by a particular interresponse time
t both increases the likelihood of short interresponse times and increases the
likelihood of interresponse times about equal to 1.

Discriminative conditioning.—Nearly all recent theoretical work on instrumen-
tal conditioning has been carried out with respect to situations in which dis-
crimination plays a major role. Several approaches have been used in analyses of
discrimination learning.

Lovejoy (140, 141) gave a thorough discussion of experimental findings con-
cerned with attention in discrimination learning, and used these as a guide in
developing assumptions of a theory. The theory, in which reinforcement influ-
ences the tendency to attend to the various stimulus dimensions and the strength
of response associated with individual stimulus properties, was shown to be
consistent with many facts in the complex and often puzzling literature of dis-
criminative instrumental conditioning.
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Other investigators have applied assumptions of discrete changes in state in
analyzing discrimination learning. Clayton (41) analyzed the learning of a simple
spatial discrimination in terms of the three-state version of all-or none learning
stated by Greeno & Steiner (94). He examined in some detail the influence of
several experimental variables, such as magnitude of reward and correction or
noncorrection, on the transition probabilities in the model. In general, Clayton
found support for the notion that such simple discriminations are learned in an
all-or-none fashion, and he was able to demonstrate that events following a
correct response are the primary determiners of the probability of transition
to the learned state. .

Another analysis using discrete changes in state was given by Lee (138), who
assumed that each discrete stimulus used or each point on a stimulus continuum
is in one of two states, conditioned to one of the response alternatives, and
stimuli similar to one given on a trial have relatively high probability of changing
state because of reinforcement given on the trial. Analyses have also been given
in which the subject is assumed to go through discrete changes in state regarding
the discrimination learning problem. Massaro (145) postulated a three-state sys-
tem with the subject having either an appropriate or inappropriate strategy or
being unconditioned. In a theory by Lynn (143), used to analyze discrimination
by monkeys, it was assumed that the subject either has learned the correct
response for a problem or is in the unlearned state, but throughout the problem
there is a probability of not attending appropriately to the stimuli.

Analyses based on the idea that learning involves gradual quantitative change
have been given by Holman (103, 105), who has been concerned with the relative
effects of reward and nonreward on simple discriminative learning in rats. In his
view, in order to isolate the functional form of the learning process one needs to
untangle the effects of reward and nonreward, which are intertwined under
normal circumstances. Holman has found (105) that when response probability is
low events that increase response probability (reward) are more effective in
changing behavior than are events that decrease response probability (non-
reward), and when response probability is high the opposite is true. Holman
(103) interpreted spontaneous alternation in the T-maze running of rats in terms
of the differential effects of reward and nonreward, and he derived predictions of
alternation behavior on the basis of that interpretation.

Durup (52-35) has also developed techniques for measuring changes of
different kinds that occur during discrimination learning, The basis of the analysis
is a model of choice behavior in which choice occurs in several stages, making
the response a result of a random walk process (26, 63), and the model permits
separation of learning to approach a positive alternative from learning to avoid a
negative alternative. A particularly interesting development is Durup’s inter-
pretation of the stages of choice in the random walk model in relation to theoreti-
cal processes of attention, memory, and decision (56), thus connecting the
random walk model with theoretical analyses like Lovejoy’s (140, 141).

Classical continuity theory has been used by Spiker (207) as the basis for an
extension of Hull-Spence discrimination learning theory. And Wolford & Bower
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(241) bave shown that some empirical results thought to oppose continuity
theory are compatible with it.

A final example of theoretical work on discriminative conditioning is the
work of Boneau & Cole (25), who used the ideas of statistical decision theory to
analyze asymptotic performance in discriminative conditioning. They assumed
that stimuli have variable effects, so that a given effective stimulus is associated
with reinforcement probabilistically, and decisions whether to respond depend
on the value of the reinforcement, the cost of responding, and the remembered
frequency of reinforcement on past occasions of the effective stimulus.

AcquiriNe INFORMATION FOorR CHoICE anD DEecision

The extensive theoretical work on sequential choice behavior during the last
decade or so is a topic worthy in and of itself for an Annual Review chapter. The
situations studied have involved discrete responses and response continuums,
learnable and nonlearnable sequences, contingent and noncontingent outcome
schedules, and variations in reward and reward schedules. Fortunately, there exist
three excellent review articles that cover essentially all of the quantitative
theorizing in this domain. In his article on probability learning in 1964, Estes
(67) reviewed developments up to that point. Myers® systematic article in 1970
(155) gives an overview of theoretical work on sequential choice behavior and
covers his own extensive work on the topic in some detail. Finally, Estes’ recent
theoretical review (68) of probability learning provides an integrative review of
theoretical developments up to the same point in time as our review.

We will not review in sketchy form here the material reviewed so well in the
three articles mentioned above. Rather, we refer the reader to those articles, and
confine ourselves to a remark that the theoretical developments in the area of
sequential choice behavior are an important component of the emerging psychol-
ogy of learning and cognition that is pointed to in the introduction to this chap-
ter. As Myers (155) emphasized, probability learning was interpreted almost ex-
clusively in a conditioning framework until the middle 1960s. Since that time, an
ever-increasing number of theories of sequential choice behavior emphasize
cognitive processes such as encoding, chunking, hypothesis testing, and so forth.
Thus, during the last decade, theorists have shifted their attention from the way
in which response probabilities change with reward or nonreward to the way in
which information processing mechanisms determine, on the basis of the past
sequence of events, the current choice or series of choices.

LEARNING CLASSIFICATION RULES

Single dimensional rules—In experimental tasks requiring subjects to classify
stimuli into categories, learning is mainly the acquisition of a rule relating prop-
erties of stimuli to response. A substantial number of studies have been carried
out in relation to Restile’s (185) rigorous development of the idea that rule learn-
ing involves selection from a set of possibilities. Bower & Trabasso (32) derived
many theorems about statistical properties of data and carried out a number of
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experiments giving startlingly good empirical support for the model, especially
regarding the counterintuitive assumption that sampling from the hypothesis
set occurs with replacement. Further work by Trabasso & Bower (228) provided
thorough analysis of the implications of the idea of learning by selection for situa-
tions involving transfer of training, variation in cue salience and number of irrele-
vant cues, and overtraining. A clarification of a basic mathematical property of
the model has been given by Fisher (79). Cotton (45) has given a substantive
extension of the model dealing with dependence of response prior to solving the
problem on trial-to-trial relationships between stimuli.

Falmagne (72) presented an analysis based on assuming that performance
improves gradually over trials according to a linear operator, but at some random
trial the solution is found and the correct response is known for all stimuli. In
another analysis, Falmagne (74) assumed that sampling weights of hypotheses
are altered by confirmations and disconfirmations that occur. Her analysis
also provides a way of estimating the probability of resampling after errors and
correct responses, and the frequency of a passive state in which subjects respond
on the basis of no hypothesis about the classification rule. The statistical methods
were used to test hypotheses about effects of the intertrial interval used in concept
identification (75).

Several analyses have been given dealing with the role of STM in the process
of learning a classification rule in a concept identification experiment. Trabasso
& Bower (227) showed that results obtained when the relevant dimension shifts
after every other error refute the assumption of sampling with no memory, and
proposed an assumption that subjects remember stimulus characteristics on
successive trials and then for three or four trials avoid sampling cues that are in-
consistently paired with responses. Gregg & Simon (96) described four alternative
theories, varying in depth of memory storage during concept identification; their
estimates of the memory parameter indicated relatively weak use of memory by
subjects.

Two theories have been proposed asuming that the role of memory in concept
identification primarilyinvolvesretention of informationabout hypotheses that the
subject is considering as possible solutions. Chumbley (40) analyzed solution of a
four-dimension problem, assuming that the subject considers all four possible
dimensions, eliminating hypotheses on the basis of stimulus information, but
sometimes losing track after errors, The frequency of losing track of the hypothesis
set was found to increase with shorter intertrial intervals and with a requirement
of dealing with three concurrent problems rather than a single problem. Wickens
& Millward (239) analyzed solution of a 12-dimension problem by practiced
subjects. They concluded that subjects have STM capacities varying from one to
four for hypotheses under active consideration, and when all hypotheses in STM
have been eliminated those possiblities are kept out of the set available for
sampling. On the other hand, there is a limitation on the number of eliminated
hypotheses that the subject can remember, so that some eliminated hypotheses
eventually return to the set of potential solutions.
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Multidimensional rules—Analyses have also been given for acquisition of
conceptual rules more complex than those involving a single stimulus dimension.
The simplest case involves learning a four-way classification consisting of a two-
by-two table of binary dimensions. Trabasso & Bower (226) analyzed this case as
independent selection of the two relevant stimulus attributes. Nahinsky (157)
analyzed learning of conjunctive classification, assuming that acquisition occurs
on the basis of sampling from the set of two-cue combinations, with focusing
occurring on both positive and negative instances, and retention of the first
stimulus-response pair shown in the experiment. Another analysis of concept
learning based on the idea of hypothesis sampling was given by Joyner (118), who
considered solution of a problem in which three players individually give num-
bers, with the goal of having the sum of their numbers equal a target number. In
this case the elements of the hypothesis set reflect the subjects’ knowledge of
basic arithmetic operations.

As an alternative to the assumption of selection from a set of hypotheses, an
assumption that positive and negative instances are stored and then scanned to
find defining properties also has been used in analyses of concept identification.
Hunt & Hovland (111) gave an analysis using this idea, including the assumption
that a limited set of dimensions is used in the scanning process at any one time.
Johnson (116) presented a more elaborate system, with a mechanism for select-
ing among subclasses of stimulus attributes for consideration, and special sub-
routines for attempting to find conjunctive and disjunctive solution concepts. In a
somewhat more formal analysis, Mott & Ross (152) described an algorithm for
generating a list of possible concepts from a set of positive and negative instances
based on the logical theory of implicants of an incomplete truth function.

Hunt and his co-workers have given analyses of the process of learning rules
for classification, using the powerful conceptual method of representing the ac-
quired concept as a decision tree (108). Hunt, Marin & Stone (112) tested systems
varying in their sophistication in choosing stimulus items for test as well as in the
amount of memory that was given to the system. Studies of the efficiency of the
systems were carried out, as well as comparisons of simulated concept learning
with performance by human subjects. Hunt (109) examined further variations
regarding the method of selecting attributes for test and for assigning a label
when an instance is encountered that is not specified on the basis of earlier learn-
ing.

Classification in associative learning.—Some attention has been given to the
process of acquiring a classification rule during the course of paired-associate
memorizing, when relationships among items can be used to simplify the task by
grouping related items that have the same response. The situations studied have
used the conditions of short lists and few response alternatives so the process of
associative learning is approximately all-or-none. Then the transfer of association
to new instances appears also to be an all-or-none process (92). The process of
acquiring a category rule has been analyzed by Batchelder (11) as an all-or-none
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process, and data appear to favor that idea over the mixed pattern-components
model of stimulus sampling theory (12).

FORMAL ASPECTS OF MATHEMATICAL MODELS

In this final section we will first present a brief classification of types of
mathematical learning theory, based on their mathematical properties rather
than their substantive assumptions. Then we will review contributions to theory
of a primarily methodological nature, concerned with formal properties of
models, including issues involved in evaluation.

TyrPEs oF THEORY

A major dimension of variation among mathematical theories of learning
involves the degree to which specific mental processes are postulated. At one
end of this continuum are quantitative descriptions of performance, where the
only theoretical entity is response probability. Experimental events (trials) have
effects on response probability represented by operators, and effects of experi-
mental variables are represented by changes in the values of parameters of the
transformational operators. Theories that specify characteristics of psychological
process and structure in more detail provide fuller explanation of performance,
but more importantly give more exact understanding of the system studied. We
differ from some commentators (96) who seem to see discrete categories of
theory, such as ‘“‘stochastic models,” that are different in kind from “‘process
models” or other similar dichotomies. Qur view is that various theories about any
process will vary both in their degrees of specificity and in the kinds of specific
process assumed. Furthermore, the amount of specificity built into a theory at
any stage of knowledge represents an important dimension of research strategy.
And since research strategies apparently pay off more or less randomly, it is
almost surely to the benefit of science that different investigators tend to choose
different strategies, so the scientific community has what amounts to a portfolio
of strategies in order to benefit from whatever advantages the various approaches
may have for different problems at various stages of progress.

While theories differ in specificity in a more or less continuous fashion, there
are some benchmarks. One step toward specificity is an assumption of a state
space, with different levels of performance associated with the various states,
and learning represented as transition among the states. More specificity is
achieved in a stochastic model in which the states are interpreted as conditions
of cognitive status, such as those given in Figure 1 of this article, or as stages of
learning or problem solving involving specific cognitive achievement such as stor-
age of representations. Even more specific assumptions are made in some theories,
often in connection with the need to specify processes sufficiently so that an
operating computer program can be written in an available programming lan-
guage. It is reasonable to suppose that some of the processes described summarily
in an information-processing theory, such as scanning a list and comparing with
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a test item, might be described in some detail in a theory dealing with processes
in a more molecular way.

In our view, there is no argument against the goal of describing cognitive
processes in more specific ways, as well as having descriptions that apply to a
wide variety of situations in which learning and other cognitive processes occur.
At the same time, significant questions remain as to optimal strategy to be used
at any given stage of theoretical progress and empirical knowledge about the
processes that occur in accomplishing various tasks. Given the empirical knowl-
edge that is available regarding a process, some possible statements of hypotheses
are so general that their likelihood of falsification in data is negligible, and they
probably have poor prospects for providing a basis for significant new knowledge
and understanding. At the same time, other possible hypotheses involve so many
detailed assumptions that go beyond available empirical evidence that they are
sure to be refuted in their first confrontation with data. While it can be instructive
to see a combination of assumptions that are mutually consistent and capable of
giving successful performance on a complex task, it remains the task of science
to develop testable hypotheses that can be challenged meaningfully in experi-
ments, and an overabundance of detail in a theory can often preclude the use of
experimental findings in guiding modifications of theory toward more accurate
description. These cautions notwithstanding, we suspect that the current state of
knowledge about learning is such that quite a variety of theoretical approaches
are likely to lead to meaningful advances in knowledge and understanding, and
we are encouraged by the relatively broad band of degrees of spec1ﬁc1ty in current
theoretical work.

MATHEMATICAL AND STATISTICAL STUDIES

A considerable number of investigations have occurred where mathematical
models are studied from the point of view of their general properties or statistical
considerations involved in their application. Norman & Yellott (170) investi-
gated properties of models that lead to probability matching, and convergence
and limit properties that follow from several general assumptions about learning
operators have been studied by Norman and others (104, 147, 164-169, 242).
There have also been analyses of families of learning operators characterized by
properties such as commutativity (142, 144), and generalizations of discrete
models, such as those deriving from stimulus sampling theory, as continuous-
time processes (4, 51, 213).

Suppes (210) studied asymptotic properties of learning systems formulated
on the basis of stimulus-response principles, and showed that they can have
limiting properties that make them isomorphic to finite automata with many of
the characteristics needed to describe language and other complex behavior,
Discussion of the status of this result by Arbib (3) and Suppes (211) has empha-
sized the importance of determining the number of states needed to produce per-
formance that people show when they use language.

Both the linear model and the all-or-none model have been the topic of
mathematical studies, Some analyses have generalized the linear model (21, 113,
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165), and several mathematical studies of the all-or-none model have been carried
out. Two aspects of the all-or-none assumption have been distinguished, with
several investigators noting that stationarity of performance before learning and
constancy of the probability of learning involve separate assumptions (73, 177,
188, 196). Rouanet et al (196) have given careful discussion of the way in which
individual differences can influence tests of the all-or-none model. An especially
promising development has been the use of the all-or-none model (119, 205) and
other more general models (49) in the analysis of item-presentation sequences in
order to develop presentation strategies that optimize learning efficiency.

A considerable literature is developing dealing with technical matters such as
parameter estimation and evaluation of learning models. Bernbach (15) and
Millward (150) have given general methods of deriving empirical predictions
from Markov models. General discussions of estimation have been given by
Holland and Kraemer (102, 126-128). A thorough discussion of all-or-none
parameters by Polson (176) deals with estimation as well as tests of hypotheses.
Theios (218) has given a method of estimating performance parameters and trials
of transition appropriate for experiments having many responses in each subject’s
sequence of performance. Regarding evaluation of models, Rouanet (194) has
given an analysis based on relationships between models that deal with varying
degrees of fine-grainedness in the partition of experimental events, and Regnier
& Rouanet (182) have shown that different interpretations of all-or-none learning
can be distinguished empirically by moving to a finer partition of events in
which a subject’s complete performance is considered. Questions involving statis-
tical tests of goodness-of-fit continue to be raised (96), and Kraemer (129) and
Hanna (98) have proposed alternatives to the standard and still much-used
indices such as goodness-of-fit chi square.

Investigations have been made of the kinds of inference that can be justified
on the basis of experimental data. Richard (192) and Jonkheere (117) have con-
sidered examples in which different psychological processes can lead to identical
empirical predictions and thus not to distinguishable in data. A specific form of
of this problem arises when a mathematical model has more parameters than can
be identified on the basis of data from specific kinds of experiments, and several
models have been analyzed regarding the identifiability of parameters (7, 86, 88,
91, 93, 94, 208).

TEXTBOOKS

Texts by Galanter (84) and Greeno (87) have been written for beginning
undergraduates with emphasis on systematic theory and inclusion of mathe-
matical models of learning. For more advanced undergraduates or beginning
graduate students, Atkinson, Bower & Crothers’ (5) text presents the basic con-
cepts of stimulus sampling theory, includes application to a number of problems,
and gives considerable attention to techniques of use. A book of problems by
Batchelder, Bjork & Yellott (13) is available. Rouanet’s (195) text also introduces
basic concepts of stimulus sampling theory, and provides an excellent introduc-
tion to the theory of conditioning on a continuum of responses. Restle & Greeno’s
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(191) text gives three chapters to mathematical learning theory, as well as four
chapters dealing with mathematical and statistical issues that are especially
relevant to learning models. Coombs, Dawes & Tversky (44) have a chapter on
learning, and they present general discussion relating to the use of mathematical
theory in psychology. Reitman’s (184) text presents an introduction to the use of
list processing notation and computer simulation in psychological theory, includ-
ing some problems in learning. Other books of particular interest are Feigen-
baum & Feldman’s (77) collection of papers in computer simulation and artificial
intelligence, Neimark & Estes’ (158) collection of papers on stimulus sampling
theory, and Norman’s (160) collection of theoretical papers on human memory.
A newly available book by Levine & Burke (139) on model techniques for learn-
ing theories presents basic mathematical material in probability theory, matrix
algebra, and Markov chains, along with techniques involved in geometric series,
difference equations, and identifiability of parameters, all of which give a very
helpful source of mathematical background useful in learning theory. A most
pleasing development in the field of text materials is Kintsch’s (123) general
text in learning and memory, in which results based on stochastic models and
simulation are considered in detail as part of the general literature on learning,
rather than as a segregated subject.
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